In
mathematics, the Jacobi group, introduced by
, is the
semidirect product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product:
* an ''inner'' semidirect product is a particular way in w ...
of the
symplectic group
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic g ...
Sp
2''n''(R) and the
Heisenberg group
In mathematics, the Heisenberg group H, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form
::\begin
1 & a & c\\
0 & 1 & b\\
0 & 0 & 1\\
\end
under the operation of matrix multiplication. Element ...
R
1+2''n''. The concept is named after
Carl Gustav Jacob Jacobi
Carl Gustav Jacob Jacobi (; ; 10 December 1804 – 18 February 1851) was a German mathematician who made fundamental contributions to elliptic functions, dynamics, differential equations, determinants, and number theory. His name is occasio ...
.
Automorphic form
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of ...
s on the Jacobi group are called
Jacobi form
In mathematics, a Jacobi form is an automorphic form on the Jacobi group, which is the semidirect product of the symplectic group Sp(n;R) and the Heisenberg group H^_R. The theory was first systematically studied by .
Definition
A Jacobi form o ...
s.
References
*
*
Modular forms
Lie groups
{{abstract-algebra-stub