In
computational mathematics
Computational mathematics is an area of mathematics devoted to the interaction between mathematics and computer computation.National Science Foundation, Division of Mathematical ScienceProgram description PD 06-888 Computational Mathematics 2006 ...
, an iterative method is a
mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the previous ones. A specific implementation of an iterative method, including the
termination
Termination may refer to:
Science
* Termination (geomorphology), the period of time of relatively rapid change from cold, glacial conditions to warm interglacial condition
* Termination factor, in genetics, part of the process of transcribing R ...
criteria, is an
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
of the iterative method. An iterative method is called convergent if the corresponding sequence converges for given initial approximations. A mathematically rigorous convergence analysis of an iterative method is usually performed; however,
heuristic
A heuristic (; ), or heuristic technique, is any approach to problem solving or self-discovery that employs a practical method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediat ...
-based iterative methods are also common.
In contrast, direct methods attempt to solve the problem by a finite sequence of operations. In the absence of
rounding error
A roundoff error, also called rounding error, is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. Rounding errors are ...
s, direct methods would deliver an exact solution (for example, solving a linear system of equations
by
Gaussian elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used ...
). Iterative methods are often the only choice for
nonlinear equation
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
s. However, iterative methods are often useful even for linear problems involving many variables (sometimes on the order of millions), where direct methods would be prohibitively expensive (and in some cases impossible) even with the best available computing power.
Attractive fixed points
If an equation can be put into the form ''f''(''x'') = ''x'', and a solution x is an attractive
fixed point of the function ''f'', then one may begin with a point ''x''
1 in the
basin of attraction
In the mathematical field of dynamical systems, an attractor is a set of states toward which a system tends to evolve, for a wide variety of starting conditions of the system. System values that get close enough to the attractor values remain ...
of x, and let ''x''
''n''+1 = ''f''(''x''
''n'') for ''n'' ≥ 1, and the sequence
''n'' ≥ 1 will converge to the solution x. Here ''x''
''n'' is the ''n''th approximation or iteration of ''x'' and ''x''
''n''+1 is the next or ''n'' + 1 iteration of ''x''. Alternately, superscripts in parentheses are often used in numerical methods, so as not to interfere with subscripts with other meanings. (For example, ''x''
(''n''+1) = ''f''(''x''
(''n'')).) If the function ''f'' is
continuously differentiable
In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non- vertical tangent line at each interior point in ...
, a sufficient condition for convergence is that the
spectral radius of the derivative is strictly bounded by one in a neighborhood of the fixed point. If this condition holds at the fixed point, then a sufficiently small neighborhood (basin of attraction) must exist.
Linear systems
In the case of a
system of linear equations, the two main classes of iterative methods are the stationary iterative methods, and the more general
Krylov subspace methods.
Stationary iterative methods
Introduction
Stationary iterative methods solve a linear system with an
operator
Operator may refer to:
Mathematics
* A symbol indicating a mathematical operation
* Logical operator or logical connective in mathematical logic
* Operator (mathematics), mapping that acts on elements of a space to produce elements of another ...
approximating the original one; and based on a measurement of the error in the result (
the residual), form a "correction equation" for which this process is repeated. While these methods are simple to derive, implement, and analyze, convergence is only guaranteed for a limited class of matrices.
Definition
An ''iterative method'' is defined by
:
and for a given linear system
with exact solution
the ''error'' by
:
An iterative method is called ''linear'' if there exists a matrix
such that
:
and this matrix is called the ''iteration matrix''.
An iterative method with a given iteration matrix
is called ''convergent'' if the following holds
:
An important theorem states that for a given iterative method and its iteration matrix
it is convergent if and only if its
spectral radius is smaller than unity, that is,
:
The basic iterative methods work by
splitting the matrix
into
:
and here the matrix
should be easily
invertible
In mathematics, the concept of an inverse element generalises the concepts of opposite () and reciprocal () of numbers.
Given an operation denoted here , and an identity element denoted , if , one says that is a left inverse of , and that ...
.
The iterative methods are now defined as
:
From this follows that the iteration matrix is given by
:
Examples
Basic examples of stationary iterative methods use a splitting of the matrix
such as
:
where
is only the diagonal part of
, and
is the strict lower
triangular part of
.
Respectively,
is the strict upper triangular part of
.
*
Richardson method:
*
Jacobi method:
*
Damped Jacobi method:
*
Gauss–Seidel method:
*
Successive over-relaxation method (SOR):
*
Symmetric successive over-relaxation
In applied mathematics, symmetric successive over-relaxation (SSOR), is a preconditioner.
If the original matrix can be split into diagonal, lower and upper triangular as A=D+L+L^\mathsf then the SSOR preconditioner matrix is defined as
M=(D+L) ...
(SSOR):
Linear stationary iterative methods are also called
relaxation methods.
Krylov subspace methods
Krylov subspace methods work by forming a
basis of the sequence of successive matrix powers times the initial residual (the Krylov sequence).
The approximations to the solution are then formed by minimizing the residual over the subspace formed.
The prototypical method in this class is the
conjugate gradient method
In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iter ...
(CG) which assumes that the system matrix
is
symmetric
Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
positive-definite.
For symmetric (and possibly indefinite)
one works with the
minimal residual method In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace wit ...
(MINRES).
In the case of non-symmetric matrices, methods such as the
generalized minimal residual method In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace wit ...
(GMRES) and the
biconjugate gradient method
In mathematics, more specifically in numerical linear algebra, the biconjugate gradient method is an algorithm to solve systems of linear equations
:A x= b.\,
Unlike the conjugate gradient method, this algorithm does not require the matrix A ...
(BiCG) have been derived.
Convergence of Krylov subspace methods
Since these methods form a basis, it is evident that the method converges in ''N'' iterations, where ''N'' is the system size. However, in the presence of rounding errors this statement does not hold; moreover, in practice ''N'' can be very large, and the iterative process reaches sufficient accuracy already far earlier. The analysis of these methods is hard, depending on a complicated function of the
spectrum
A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of color ...
of the operator.
Preconditioners
The approximating operator that appears in stationary iterative methods can also be incorporated in Krylov subspace methods such as
GMRES In mathematics, the generalized minimal residual method (GMRES) is an iterative method for the numerical solution of an indefinite nonsymmetric system of linear equations. The method approximates the solution by the vector in a Krylov subspace wi ...
(alternatively,
preconditioned Krylov methods can be considered as accelerations of stationary iterative methods), where they become transformations of the original operator to a presumably better conditioned one. The construction of preconditioners is a large research area.
History
Jamshīd al-Kāshī
Ghiyāth al-Dīn Jamshīd Masʿūd al-Kāshī (or al-Kāshānī) ( fa, غیاث الدین جمشید کاشانی ''Ghiyās-ud-dīn Jamshīd Kāshānī'') (c. 1380 Kashan, Iran – 22 June 1429 Samarkand, Transoxania) was a Persian astronom ...
used iterative methods to calculate the sine of 1° and in ''The Treatise of Chord and Sine'' to high precision.
An early iterative method for solving a linear system appeared in a letter of
Gauss
Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
to a student of his. He proposed solving a 4-by-4 system of equations by repeatedly solving the component in which the residual was the largest .
The theory of stationary iterative methods was solidly established with the work of
D.M. Young starting in the 1950s. The conjugate gradient method was also invented in the 1950s, with independent developments by
Cornelius Lanczos,
Magnus Hestenes and
Eduard Stiefel, but its nature and applicability were misunderstood at the time. Only in the 1970s was it realized that conjugacy based methods work very well for
partial differential equation
In mathematics, a partial differential equation (PDE) is an equation which imposes relations between the various partial derivatives of a multivariable function.
The function is often thought of as an "unknown" to be solved for, similarly to ...
s, especially the elliptic type.
See also
*
Closed-form expression
In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations (e.g., + − × ÷), and functions (e.g., ''n''th ro ...
*
Iterative refinement
*
Kaczmarz method
*
Non-linear least squares
*
Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods th ...
*
Root-finding algorithm
In mathematics and computing, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function , from the real numbers to real numbers or from the complex numbers to the complex numbe ...
References
External links
Templates for the Solution of Linear Systems
{{Authority control
Numerical analysis