HOME

TheInfoList



OR:

An isopeptide bond is a type of amide bond formed between a
carboxyl group In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl group (e.g. ...
of one
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 a ...
and an
amino group In chemistry, amines (, ) are organic compounds that contain carbon-nitrogen bonds. Amines are formed when one or more hydrogen atoms in ammonia are replaced by alkyl or aryl groups. The nitrogen atom in an amine possesses a lone pair of elec ...
of another. An isopeptide bond is the linkage between the side chain amino or carboxyl group of one amino acid to the α-carboxyl, α-amino group, or the side chain of another amino acid. In a typical
peptide bond In organic chemistry, a peptide bond is an amide type of covalent chemical bond linking two consecutive alpha-amino acids from C1 (carbon number one) of one alpha-amino acid and N2 (nitrogen number two) of another, along a peptide or protein cha ...
, also known as eupeptide bond, the amide bond always forms between the α-carboxyl group of one amino acid and the α-amino group of the second amino acid. Isopeptide bonds are rarer than regular peptide bonds. Isopeptide bonds lead to branching in the
primary sequence Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function. The structure of these molecules may be considered at any of several length sca ...
of a protein. Proteins formed from normal peptide bonds typically have a linear primary sequence. Amide bonds, and thus isopeptide bonds, are stabilized by
resonance Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
(
electron delocalization In chemistry, delocalized electrons are electrons in a molecule, ion or solid metal that are not associated with a single atom or a covalent bond.IUPAC Gold Boo''delocalization''/ref> The term delocalization is general and can have slightly diff ...
) between the carbonyl oxygen, the carbonyl carbon, and the
nitrogen Nitrogen is a chemical element; it has Symbol (chemistry), symbol N and atomic number 7. Nitrogen is a Nonmetal (chemistry), nonmetal and the lightest member of pnictogen, group 15 of the periodic table, often called the Pnictogen, pnictogens. ...
atom. The bond strength of an isopeptide bond is similar to that of a peptide due to the similar bonding type. The
bond strength In chemistry, bond energy (''BE'') is one measure of the strength of a chemical bond. It is sometimes called the mean bond, bond enthalpy, average bond enthalpy, or bond strength. IUPAC defines bond energy as the average value of the gas-phase bo ...
of a peptide bond is around 300 kJ/mol, or about 70 kcal/mol. Amino acids such as
lysine Lysine (symbol Lys or K) is an α-amino acid that is a precursor to many proteins. Lysine contains an α-amino group (which is in the protonated form when the lysine is dissolved in water at physiological pH), an α-carboxylic acid group ( ...
,
glutamic acid Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α- amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can ...
,
glutamine Glutamine (symbol Gln or Q) is an α-amino acid that is used in the biosynthesis of proteins. Its side chain is similar to that of glutamic acid, except the carboxylic acid group is replaced by an amide. It is classified as a charge-neutral ...
,
aspartic acid Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of protei ...
, and
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
can form isopeptide bonds because they all contain an amino or carboxyl group on their side chain. For example, the formation of an isopeptide bond between the sidechains of lysine and glutamine is as follows: * Gln−(C=O)NH2 + Lys-NH3+ → Gln−(C=O)NH−Lys + NH4+ The ε-amino group of lysine can also react with the α-carboxyl group of any other amino acid as in the following reaction: * Ile-(C=O)O + Lys-NH3+ → Ile-(C=O)NH-Lys + H2O Isopeptide bond formation is typically enzyme-catalyzed. The reaction between lysine and glutamine, as shown above, is catalyzed by a
transglutaminase Transglutaminases are enzymes that in nature primarily catalyze the formation of an isopeptide bond between γ- carboxamide groups ( -(C=O)NH2 ) of glutamine residue side chains and the ε- amino groups ( -NH2 ) of lysine residue sid ...
. Another example of enzyme-catalyzed isopeptide bond formation is the formation of the
glutathione Glutathione (GSH, ) is an organic compound with the chemical formula . It is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources ...
molecule. Glutathione, a
tripeptide A tripeptide is a peptide derived from three amino acids joined by two or sometimes three peptide bonds. As for proteins, the function of peptides is determined by the constituent amino acids and their sequence. In terms of scientific investigati ...
, contains a normal peptide bond (between
cysteine Cysteine (; symbol Cys or C) is a semiessential proteinogenic amino acid with the chemical formula, formula . The thiol side chain in cysteine enables the formation of Disulfide, disulfide bonds, and often participates in enzymatic reactions as ...
and
glycine Glycine (symbol Gly or G; ) is an amino acid that has a single hydrogen atom as its side chain. It is the simplest stable amino acid. Glycine is one of the proteinogenic amino acids. It is encoded by all the codons starting with GG (G ...
) and an isopeptide bond (between glutamate and cysteine). The formation of the isopeptide bond between the γ-carboxyl group of glutamate and the α-amino group of cysteine is catalyzed by the enzyme γ-glutamylcysteine
synthetase In biochemistry, a ligase is an enzyme that can catalyze the joining ( ligation) of two molecules by forming a new chemical bond. This is typically via hydrolysis of a small pendant chemical group on one of the molecules, typically resulting in ...
. The isopeptide bond is formed instead of a eupeptide bond because intracellular peptidases are unable to recognize this linkage and therefore do not
hydrolyze Hydrolysis (; ) is any chemical reaction in which a molecule of water breaks one or more chemical bonds. The term is used broadly for substitution, elimination, and solvation reactions in which water is the nucleophile. Biological hydrolysis ...
the bond. An isopeptide bond can form spontaneously as observed in the maturation of the
bacteriophage A bacteriophage (), also known informally as a phage (), is a virus that infects and replicates within bacteria. The term is derived . Bacteriophages are composed of proteins that Capsid, encapsulate a DNA or RNA genome, and may have structu ...
HK97
capsid A capsid is the protein shell of a virus, enclosing its genetic material. It consists of several oligomeric (repeating) structural subunits made of protein called protomers. The observable 3-dimensional morphological subunits, which may or m ...
. In this case, the ε-amino group of lysine autocatalytically reacts with the side chain carboxamide group of
asparagine Asparagine (symbol Asn or N) is an α-amino acid that is used in the biosynthesis of proteins. It contains an α-amino group (which is in the protonated −NH form under biological conditions), an α-carboxylic acid group (which is in the depro ...
. Spontaneous isopeptide bond formation between lysine and asparagine also occurs in
Gram-positive In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. The Gram stain is ...
bacterial pili.


Function

Enzyme-generated isopeptide bonds have two main biological purposes:
signaling A signal is both the process and the result of transmission of data over some media accomplished by embedding some variation. Signals are important in multiple subject fields including signal processing, information theory and biology. ...
and
structure A structure is an arrangement and organization of interrelated elements in a material object or system, or the object or system so organized. Material structures include man-made objects such as buildings and machines and natural objects such as ...
. Biosignaling influences protein function, chromatin condensation, and protein-half life. The biostructural roles of isopeptide bonds include
blood clotting Coagulation, also known as clotting, is the process by which blood changes from a liquid to a gel, forming a thrombus, blood clot. It results in hemostasis, the cessation of blood loss from a damaged vessel, followed by repair. The process of co ...
(for wound healing),
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
upkeep, the apoptosis pathway, modifying micro-tubules, and forming
pathogen In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a Germ theory of d ...
ic pili in bacteria. Isopeptide bonds contribute to the
pathogen In biology, a pathogen (, "suffering", "passion" and , "producer of"), in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a Germ theory of d ...
icity of ''
Vibrio cholerae ''Vibrio cholerae'' is a species of Gram-negative bacteria, Gram-negative, Facultative anaerobic organism, facultative anaerobe and Vibrio, comma-shaped bacteria. The bacteria naturally live in Brackish water, brackish or saltwater where they att ...
'' because the actin cross-linking domain (ACD) forms an intermolecular bond between the γ-carboxyl group of
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
and the ε-amino group of lysine in
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
. This process stops actin
polymerization In polymer chemistry, polymerization (American English), or polymerisation (British English), is a process of reacting monomer molecules together in a chemical reaction to form polymer chains or three-dimensional networks. There are many fo ...
in the
host cell In biology and medicine, a host is a larger organism that harbours a smaller organism; whether a parasitic, a mutualistic, or a commensalist ''guest'' (symbiont). The guest is typically provided with nourishment and shelter. Examples include ...
.


Biosignaling

For isopeptide bonds linking one protein to another for the purpose of signal transduction, the literature is dominated by
ubiquitin Ubiquitin is a small (8.6  kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
and other similar proteins. Ubiquitin and its related proteins (
SUMO is a form of competitive full-contact wrestling where a ''rikishi'' (wrestler) attempts to force his opponent out of a circular ring (''dohyō'') or into touching the ground with any body part other than the soles of his feet (usually by th ...
, Atg8, Atg12, etc.) all tend to follow relatively the same protein ligation pathway. The process of protein ligation by ubiquitin and ubiquitin-like proteins has three main steps. In the initial step, the specific activating protein (E1 or E1-like protein) activates Ubiquitin by adenylating it with ATP. Then the adenylated Ubiquitin can be transferred to a conserved cysteine using a thioester bond which is between the carboxyl group of the
C-terminal The C-terminus (also known as the carboxyl-terminus, carboxy-terminus, C-terminal tail, carboxy tail, C-terminal end, or COOH-terminus) is the end of an amino acid chain (protein or polypeptide), terminated by a free carboxyl group (-COOH). When t ...
glycine of the ubiquitin and the sulfur of the E1 cysteine. The activating E1 enzyme then binds with and transfers the Ubiquitin to the next tier, the E2 enzyme which accepts the protein and once again forms a thioester with a conserved bond. The E2 acts to certain degree as an intermediary which then binds to E3 enzyme ligase for the final tier, which leads to the eventual transfer of the ubiquitin or ubiquitin related protein to a lysine site on the targeted protein, or more commonly for ubiquitin, onto ubiquitin itself to form chains of said protein. However, in final tier, there is also a divergence, in that depending on the type of E3 ligase, it may not actually be causing the conjugation. As there are the E3 ligases containing HECT domains, in which they continue this 'transfer chain' by accepting once again the ubiquitin via another conserved cysteine and then targeting it and transferring it to the desired target. Yet in case of RING finger domain containing that use coordination bonds with Zinc ions to stabilize their structures, they act more to direct the reaction. By that, it's meant that once the RING finger E3 ligase binds with the E2 containing the ubiquitin, it simply acts as a targeting device which directs the E2 to directly ligate the target protein at the lysine site. Though in this case ubiquitin does represent other proteins related to it well, each protein obviously will have its own nuisances such as SUMO, which tends to be RING finger domain ligases, where the E3 simply acts as the targeting device to direct the ligation by the E2, and not actually performing the reaction itself such as the Ubiquitin E3-HECT ligases. Thus while the internal mechanisms differ such as how proteins participate in the transfer chain, the general chemical aspects such as using thioesters and specific ligases for targeting remain the same.


Biostructural

The enzymatic chemistry involved in the formation of isopeptides for structural purposes is different from the case of ubiquitin and ubiquitin related proteins. In that, instead of sequential steps involving multiple enzymes to activate, conjugate and target the substrate. The catalysis is performed by one enzyme and the only precursor step, if there is one, is generally cleavage to activate it from a zymogen. However, the uniformity that exists in the ubiquitin's case is not so here, as there are numerous different enzymes all performing the reaction of forming the isopeptide bond. The first case is that of the sortases, an enzyme family that is spread throughout numerous gram positive bacteria. It has been shown to be an important pathogenicity and virulence factor. The general reaction performed by sortases involves using its own brand of the 'catalytic triad': i.e. using histidine, arginine, and cysteine for the reactive mechanism. His and Arg act to help create the reactive environment, and Cys once again acts as the reaction center by using a thioester help hold a carboxyl group until the amine of a Lysine can perform a nucleophilic attack to transfer the protein and form the isopeptide bond. An ion that can sometimes play an important although indirect role in the enzymatic reaction is calcium, which is bound by sortase. It plays an important role in holding the structure of the enzyme in the optimal conformation for catalysis. However, there are cases where calcium has been shown to be non-essential for catalysis to take place. Another aspect that distinguishes sortases in general is that they have a very specific targeting for their substrate, as sortases have generally two functions, the first is the fusing of proteins to the cell wall of the bacteria and the second is the polymerization of pilin. For the process of localization of proteins to the cell wall there is three-fold requirement that the protein contain a hydrophobic domain, a positively charged tail region, and final specific sequence used for recognition. The best studied of these signals is the LPXTG, which acts as the point of cleavage, where the sortase attacks in between Thr and Gly, conjugating to the Thr carboxyl group. Then the thioester is resolved by the transfer of the peptide to a primary amine, and this generally has a very high specificity, which is seen in the example of B. cereus where the sortase D enzyme helps to polymerize the BcpA protein via two recognition signals, the LPXTG as the cleavage and thioester forming point, and the YPKN site which acts as the recognition signal as where the isopeptide will form. While the particulars may vary between bacteria, the fundamentals of sortase enzymatic chemistry remain the same. The next case is that of Transglutaminases (TGases), which act mainly within eukaryotes for fusing together different proteins for a variety of reasons such as a wound healing or attaching proteins to lipid membranes. The TGases themselves also contain their own 'catalytic triad' with Histidine, Aspartate, and Cysteine. The roles of these residues are analogous or the same as the previously described Sortases, in that His and Asp play a supporting role in interacting with the target residue, while the Cys forms a thioester with a carboxyl group for a later nucleophilic attack by a primary amine, in this case due to interest that of Lysine. Though the similarities to sortase catalytically start to end there, as the enzyme and the family is dependent on calcium, which plays a crucial structural role in holding a tight conformation of the enzyme. The TGases, also have a very different substrate specificity in that they target specifically the middle Gln, in the sequence 'Gln-Gln-Val'. The general substrate specificity, i.e. the specific protein is due to the general structure of different TGases which targets them to the substrate. The specificity has been noted in TGases such that different TGases will react with different Gln's on the same protein, signifying that the enzymes have a very specific initial targeting. It has also been shown to have some specificity as to which target Lysine it transfers the protein to, as in the case of Factor XIII, where the adjacent residue to the Lys decides whether the reaction will occur. Thus while the TGases may initially seem like a eukaryotic sortase, they stand on their own as separate set of enzymes. Another case of an isopeptide linking enzyme for structural purposes is the actin cross-linking domain (ACD) of the MARTX toxin protein generated by V. cholerae. While it has been shown that the ACD when performing the catalysis uses magnesium and ATP for the formation of the cross-links the specifics of the mechanism are uncertain. Though an interesting aspect of the cross-link formed in this case, is that it uses a non-terminal Glu to ligate to a non-terminal Lys, which seems to be rare in the process of forming an isopeptide bond. Though the chemistry of ACD is still to be resolved, it shows that isopeptide bond formation is not dependent simply on Asp/Asn for non-terminal isopeptide linkages between proteins. The final case to be looked is the curious case of the post translational modifications of microtubilin (MT). MT contains a wide array of post translational modifications; however the two of most regarded interest are polyglutamylation and polyglycylation. Both modifications are similar in the sense they are repeating stretches of the same amino acid fused to the side chain carboxyl group of glutamate at the c-terminal region of the MT. The enzymatic mechanisms are not fully fleshed out as not much is known about the polyglycating enzyme. In the case of polyglutamylation the exact mechanism is also unknown, but it does seem to be ATP-dependent. Though again there is a lack of clarity in regard to the enzymatic chemistry, there is still valuable insight in the formation of isopeptide bonds using the R-group carboxyl of Glu in conjunction with the N-terminal amino of the modifying peptides.


Applications

Spontaneous isopeptide bond formation has been exploited in the development a peptide tag called SpyTag. SpyTag can spontaneously and irreversibly react with its binding partner (a protein termed SpyCatcher) through a covalent isopeptide bond. This molecular tool may have applications for ''in vivo'' protein targeting, fluorescent microscopy, and irreversible attachment for a
protein microarray A protein microarray (or protein chip) is a high-throughput method used to track the interactions and activities of proteins, and to determine their function, and determining function on a large scale. Its main advantage lies in the fact that larg ...
. Following this, other Tag/Catcher systems were developed such as SnoopTag/SnoopCatcher and SdyTag/SdyCatcher that complement SpyTag/SpyCatcher.


See also

*
Organic Chemistry Organic chemistry is a subdiscipline within chemistry involving the science, scientific study of the structure, properties, and reactions of organic compounds and organic matter, organic materials, i.e., matter in its various forms that contain ...
*
Biochemistry Biochemistry, or biological chemistry, is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology, a ...
* Protein tags *
SpyCatcher ''Spycatcher: The Candid Autobiography of a Senior Intelligence Officer'' (1987) is a memoir written by Peter Wright, former MI5 officer and assistant director, and co-author Paul Greengrass. Wright drew on his experiences and research into ...


References

{{DEFAULTSORT:Isopeptide Bond Chemical bonding Protein structure