
In
physical science, an isolated system is either of the following:
# a
physical system
A physical system is a collection of physical objects under study. The collection differs from a set: all the objects must coexist and have some physical relationship.
In other words, it is a portion of the physical universe chosen for analys ...
so far removed from other systems that it does not interact with them.
# a
thermodynamic system
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.
Thermodynamic systems can be passive and active according to internal processes. According to inter ...
enclosed by rigid immovable
walls through which neither
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
nor
energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
can pass.
Though subject internally to its own gravity, an isolated system is usually taken to be outside the reach of external gravitational and other long-range forces.
This can be contrasted with what (in the more common terminology used in thermodynamics) is called a
closed system
A closed system is a natural physical system that does not allow transfer of matter in or out of the system, althoughin the contexts of physics, chemistry, engineering, etc.the transfer of energy (e.g. as work or heat) is allowed.
Physics
In cl ...
, being enclosed by selective walls through which energy can pass as heat or work, but not matter; and with an
open system, which both matter and energy can enter or exit, though it may have variously impermeable walls in parts of its boundaries.
An isolated system obeys the
conservation law that its total energy–mass stays constant. Most often, in thermodynamics, mass and energy are treated as separately conserved.
Because of the requirement of enclosure, and the near ubiquity of gravity, strictly and ideally isolated systems do not actually occur in experiments or in nature. Though very useful, they are strictly hypothetical.
Classical thermodynamics is usually presented as postulating the existence of isolated systems. It is also usually presented as the fruit of experience. Obviously, no experience has been reported of an ideally isolated system.
It is, however, the fruit of experience that some physical systems, including isolated ones, do seem to reach their own states of internal thermodynamic equilibrium. Classical thermodynamics postulates the existence of systems in their own states of internal thermodynamic equilibrium. This postulate is a very useful idealization.
In the attempt to explain the idea of a gradual approach to thermodynamic equilibrium after a
thermodynamic operation, with
entropy
Entropy is a scientific concept, most commonly associated with states of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the micros ...
increasing according to the
second law of thermodynamics
The second law of thermodynamics is a physical law based on Universal (metaphysics), universal empirical observation concerning heat and Energy transformation, energy interconversions. A simple statement of the law is that heat always flows spont ...
, Boltzmann’s
H-theorem used
equations, which assumed a system (for example, a
gas) was isolated. That is, all the mechanical
degrees of freedom
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinite ...
could be specified, treating the enclosing walls simply as
mirror
A mirror, also known as a looking glass, is an object that Reflection (physics), reflects an image. Light that bounces off a mirror forms an image of whatever is in front of it, which is then focused through the lens of the eye or a camera ...
boundary conditions. This led to
Loschmidt's paradox. If, however, the
stochastic Stochastic (; ) is the property of being well-described by a random probability distribution. ''Stochasticity'' and ''randomness'' are technically distinct concepts: the former refers to a modeling approach, while the latter describes phenomena; i ...
behavior of the
molecule
A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s and
thermal radiation
Thermal radiation is electromagnetic radiation emitted by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. The emission of energy arises from a combination of electro ...
in real enclosing walls is considered, then the system is in effect in a heat bath. Then Boltzmann’s assumption of
molecular chaos can be justified.
The concept of an isolated system can serve as a useful
model
A model is an informative representation of an object, person, or system. The term originally denoted the plans of a building in late 16th-century English, and derived via French and Italian ultimately from Latin , .
Models can be divided in ...
approximating many real-world situations. It is an acceptable
idealization used in constructing
mathematical model
A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
s of certain natural
phenomena
A phenomenon ( phenomena), sometimes spelled phaenomenon, is an observable Event (philosophy), event. The term came into its modern Philosophy, philosophical usage through Immanuel Kant, who contrasted it with the noumenon, which ''cannot'' be ...
; e.g., the
planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s in the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, and the
proton
A proton is a stable subatomic particle, symbol , Hydron (chemistry), H+, or 1H+ with a positive electric charge of +1 ''e'' (elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an e ...
and
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
in a
hydrogen atom are often treated as isolated systems. But, from time to time, a hydrogen atom will
interact with
electromagnetic radiation
In physics, electromagnetic radiation (EMR) is a self-propagating wave of the electromagnetic field that carries momentum and radiant energy through space. It encompasses a broad spectrum, classified by frequency or its inverse, wavelength ...
and go to an
excited state
In quantum mechanics
Quantum mechanics is the fundamental physical Scientific theory, theory that describes the behavior of matter and of light; its unusual characteristics typically occur at and below the scale of atoms. Reprinted, Add ...
.
Radiative isolation
For radiative isolation, the walls should be perfectly conductive, so as to perfectly reflect the radiation within the cavity, as for example imagined by
Planck.
He was considering the internal thermal radiative equilibrium of a thermodynamic system in a cavity initially devoid of substance. He did not mention what he imagined to surround his perfectly reflective and thus perfectly conductive walls. Presumably, since they are perfectly reflective, they isolate the cavity from any external electromagnetic effect. Planck held that for radiative equilibrium within the isolated cavity, it needed to have added to its interior a speck of carbon.
If the cavity with perfectly reflective walls contains enough radiative energy to sustain a temperature of cosmological magnitude, then the speck of carbon is not needed because the radiation generates particles of substance, such as for example electron-positron pairs, and thereby reaches thermodynamic equilibrium.
A different approach is taken by
Roger Balian. For quantizing the radiation in the cavity, he imagines his radiatively isolating walls to be perfectly conductive. Though he does not mention mass outside, and it seems from his context that he intends the reader to suppose the interior of the cavity to be devoid of mass, he does imagine that some factor causes currents in the walls. If that factor is internal to the cavity, it can be only the radiation, which would thereby be perfectly reflected. For the thermal equilibrium problem, however, he considers walls that contain charged particles that interact with the radiation inside the cavity; such cavities are of course not isolated, but may be regarded as in a heat bath.
[ Balian, R., (1982). ''From Microphysics to Macrophysics: Methods and Applications of Statistical Physics'', translated by D. ter Haar, volume 2, Springer, , pp. 203, 215.]
See also
*
Closed system
A closed system is a natural physical system that does not allow transfer of matter in or out of the system, althoughin the contexts of physics, chemistry, engineering, etc.the transfer of energy (e.g. as work or heat) is allowed.
Physics
In cl ...
*
Dynamical system
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
*
Open system
*
Thermodynamic system
A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics.
Thermodynamic systems can be passive and active according to internal processes. According to inter ...
*
Open system (thermodynamics)
References
{{DEFAULTSORT:Isolated System
Thermodynamic systems