HOME

TheInfoList



OR:

The Isabelle
automated theorem prover Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a ma ...
is a higher-order logic (HOL) theorem prover, written in
Standard ML Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular among compiler writers and programming language researchers, as well as in the development of ...
and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of
formal methods In computer science, formal methods are mathematically rigorous techniques for the specification, development, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the exp ...
. It can be seen as an IDE for formal methods. In recent years, a substantial number of theories and system extensions have been collected in the Isabelle ''Archive of Formal Proofs'' (Isabelle AFP) Isabelle was named by
Lawrence Paulson Lawrence Charles Paulson (born 1955) is an American computer scientist. He is a Professor of Computational Logic at the University of Cambridge Computer Laboratory and a Fellow of Clare College, Cambridge. Education Paulson graduated from the ...
after
Gérard Huet Gérard Pierre Huet (; born 7 July 1947) is a French computer scientist, linguist and mathematician. He is senior research director at INRIA and mostly known for his major and seminal contributions to type theory, programming language theory an ...
's daughter. The Isabelle theorem prover is
free software Free software or libre software is computer software distributed under terms that allow users to run the software for any purpose as well as to study, change, and distribute it and any adapted versions. Free software is a matter of liberty, ...
, released under the revised
BSD license BSD licenses are a family of permissive free software licenses, imposing minimal restrictions on the use and distribution of covered software. This is in contrast to copyleft licenses, which have share-alike requirements. The original BSD li ...
.


Features

Isabelle is generic: it provides a
meta-logic Metalogic is the study of the metatheory of logic. Whereas ''logic'' studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems.Harry GenslerIntroduction to Logic Routledge, 2 ...
(a weak
type theory In mathematics, logic, and computer science, a type theory is the formal system, formal presentation of a specific type system, and in general type theory is the academic study of type systems. Some type theories serve as alternatives to set theor ...
), which is used to encode object logics like
first-order logic First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quanti ...
(FOL),
higher-order logic mathematics and logic, a higher-order logic is a form of predicate logic that is distinguished from first-order logic by additional quantifiers and, sometimes, stronger semantics. Higher-order logics with their standard semantics are more expres ...
(HOL) or
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
(ZFC). The most widely used object logic is Isabelle/HOL, although significant set theory developments were completed in Isabelle/ZF. Isabelle's main proof method is a higher-order version of resolution, based on higher-order unification. Though interactive, Isabelle features efficient automatic reasoning tools, such as a
term rewriting In mathematics, computer science, and logic, rewriting covers a wide range of methods of replacing subterms of a formula with other terms. Such methods may be achieved by rewriting systems (also known as rewrite systems, rewrite engines, or red ...
engine and a tableaux prover, various decision procedures, and, through the Sledgehammer proof-automation interface, external
satisfiability modulo theories In computer science and mathematical logic, satisfiability modulo theories (SMT) is the problem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean satisfiability problem (SAT) to more complex formulas involvin ...
(SMT) solvers (including CVC4) and resolution-based
automated theorem prover Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a ma ...
s (ATPs), including E and SPASS (the Metis proof method reconstructs resolution proofs generated by these ATPs). It also features two model finders (
counterexample A counterexample is any exception to a generalization. In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. For example, the fact that "John Smith is not a lazy student" is ...
generators): NitpickJasmin Christian Blanchette, Mathias Fleury, Peter Lammich & Christoph Weidenbach
"A Verified SAT Solver Framework with Learn, Forget, Restart, and Incrementality"
''Journal of Automated Reasoning'' 61:333–365 (2018).
and Nunchaku. Isabelle features locales which are modules that structure large proofs. A locale fixes types, constants, and assumptions within a specified scope so that they do not have to be repeated for every
lemma Lemma may refer to: Language and linguistics * Lemma (morphology), the canonical, dictionary or citation form of a word * Lemma (psycholinguistics), a mental abstraction of a word about to be uttered Science and mathematics * Lemma (botany), a ...
. Isar ("intelligible semi-automated reasoning") is Isabelle's formal proof language. It is inspired by the Mizar system.


Example proof

Isabelle allows proofs to be written in two different styles, the
procedural Procedural may refer to: * Procedural generation, a term used in computer graphics applications *Procedural knowledge, the knowledge exercised in the performance of some task * Procedural law, a legal concept *Procedural memory, a cognitive scienc ...
and the declarative. Procedural proofs specify a series of
tactics Tactic(s) or Tactical may refer to: * Tactic (method), a conceptual action implemented as one or more specific tasks ** Military tactics Military tactics encompasses the art of organizing and employing fighting forces on or near the battlefiel ...
(theorem proving functions/procedures) to apply; while reflecting the procedure that a human mathematician might apply to proving a result, they are typically hard to read as they do not describe the outcome of these steps. Declarative proofs (supported by Isabelle's proof language, Isar), on the other hand, specify the actual mathematical operations to be performed, and are therefore more easily read and checked by humans. The procedural style has been deprecated in recent versions of Isabelle. For example, a declarative
proof by contradiction In logic and mathematics, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition, by showing that assuming the proposition to be false leads to a contradiction. Proof by contradiction is also known ...
in Isar that the square root of two is not rational can be written as follows.
sqrt2_not_rational: ?x = m n :: nat sqrt_rat: lowest_terms: (rule Rats_abs_nat_div_natE) (auto simp add: power2_eq_square) eq: of_nat_eq_iff power2_eq_square fastforce simp simp - k .. eq simp simp simp (rule gcd_greatest) lowest_terms simp False odd_one blast


Applications

Isabelle has been used to aid
formal methods In computer science, formal methods are mathematically rigorous techniques for the specification, development, and verification of software and hardware systems. The use of formal methods for software and hardware design is motivated by the exp ...
for the specification, development and verification of software and hardware systems. Isabelle has been used to formalize numerous theorems from mathematics and
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
, like
Gödel's completeness theorem Gödel's completeness theorem is a fundamental theorem in mathematical logic that establishes a correspondence between semantic truth and syntactic provability in first-order logic. The completeness theorem applies to any first-order theory: I ...
, Gödel's theorem about the consistency of the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
, the prime number theorem, correctness of
security protocol A security protocol (cryptographic protocol or encryption protocol) is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol descri ...
s, and properties of programming language semantics. Many of the formal proofs are, as mentioned, maintained in the Archive of Formal Proofs, which contains (as of 2019) at least 500 articles with over 2 million lines of proof in total. * In 2009, the L4.verified project at NICTA produced the first formal proof of functional correctness of a general-purpose operating system kernel: the seL4 (secure embedded L4)
microkernel In computer science, a microkernel (often abbreviated as μ-kernel) is the near-minimum amount of software that can provide the mechanisms needed to implement an operating system (OS). These mechanisms include low-level address space management, ...
. The proof is constructed and checked in Isabelle/HOL and comprises over 200,000 lines of proof script to verify 7,500 lines of C. The verification covers code, design, and implementation, and the main theorem states that the C code correctly implements the formal specification of the kernel. The proof uncovered 144 bugs in an early version of the C code of the seL4 kernel, and about 150 issues in each of design and specification. * The definition of the programming language
Lightweight Java Lightweight Java (LJ) is a fully formalized and extensible minimal imperative fragment of Java. The language was designed for academic purposes within the Computer Laboratory, University of Cambridge. The definition of LJ was proven type-sound in ...
was proven type-sound in Isabelle. Larry Paulson keeps a list of research projects that use Isabelle.


Alternatives

Several languages and systems provide similar functionality: * Agda, written in Haskell * Coq, written in
OCaml OCaml ( , formerly Objective Caml) is a general-purpose, multi-paradigm programming language which extends the Caml dialect of ML with object-oriented features. OCaml was created in 1996 by Xavier Leroy, Jérôme Vouillon, Damien Doligez, D ...
* Lean, written in C++ *
LEGO Lego ( , ; stylized as LEGO) is a line of plastic construction toys that are manufactured by The Lego Group, a privately held company based in Billund, Denmark. The company's flagship product, Lego, consists of variously colored interlockin ...
, written in
Standard ML of New Jersey Standard ML of New Jersey (SML/NJ; Standard Meta-Language of New Jersey) is a free and open-source compiler and programming environment for the Standard ML programming language. Aside from its runtime system, which is written in C, SML/NJ is wr ...
* Mizar system, written in
Free Pascal Free Pascal Compiler (FPC) is a compiler for the closely related programming-language dialects Pascal and Object Pascal. It is free software released under the GNU General Public License, witexception clausesthat allow static linking against i ...
* Metamath, written in
ANSI C ANSI C, ISO C, and Standard C are successive standards for the C programming language published by the American National Standards Institute (ANSI) and ISO/IEC JTC 1/SC 22/WG 14 of the International Organization for Standardization (ISO) and th ...
* Prover9, written in C, with a GUI written in Python *
Twelf Twelf is an implementation of the logical framework LF developed by Frank Pfenning and Carsten Schürmann at Carnegie Mellon University. It is used for logic programming and for the formalization of programming language theory. Introduction At i ...
, written in
Standard ML Standard ML (SML) is a general-purpose, modular, functional programming language with compile-time type checking and type inference. It is popular among compiler writers and programming language researchers, as well as in the development of ...


Notes


References


Further reading

*
Lawrence C. Paulson Lawrence Charles Paulson (born 1955) is an American computer scientist. He is a Professor of Computational Logic at the University of Cambridge Computer Laboratory and a Fellow of Clare College, Cambridge. Education Paulson graduated from the ...

"The Foundation of a Generic Theorem Prover"
''Journal of Automated Reasoning'', Volume 5, Issue 3 (September 1989), pages: 363–397, . * Lawrence C. Paulson and
Tobias Nipkow Tobias Nipkow (born 1958) is a German computer scientist. Career Nipkow received his Diplom (MSc) in computer science from the Department of Computer Science of the Technische Hochschule Darmstadt in 1982, and his Ph.D. from the University of ...

"Isabelle Tutorial and User's Manual"
1990. * M. A. Ozols, K. A. Eastaughffe, and A. Cant
"DOVE: A Tool for Design Oriented Verification and Evaluation"
''Proceedings of AMAST 97'', M. Johnson, editor, Sydney, Australia. Lecture Notes in Computer Science (LNCS) Vol. 1349, Springer Verlag, 1997. * Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel
"Isabelle/HOL – A Proof Assistant for Higher-Order Logic"
2020.


External links

* {{Official website, https://isabelle.in.tum.de
Isabelle on Stack Overflow

The Archive of Formal Proofs

IsarMathLib
Proof assistants Free theorem provers Software using the BSD license