Iron Catastrophe
   HOME

TheInfoList



OR:

The iron catastrophe is a postulated major geological event early in the
history of Earth The natural history of Earth concerns the development of planet Earth from its formation to the present day. Nearly all branches of natural science have contributed to understanding of the main events of Earth's past, characterized by consta ...
, where heavy metals such as iron and nickel congregated in the core during a geologically brief period. The original accretion of the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's material into a spherical mass is thought to have resulted in a relatively uniform composition. While residual heat from the collision of the material that formed the Earth was significant, heating from
radioactive Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
materials in this mass gradually increased the temperature until a critical condition was reached. As material became molten enough to allow movement, the denser
iron Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
and
nickel Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
, previously evenly distributed throughout the mass, began to migrate to the center of the planet to form the core. The
gravitational potential energy Gravitational energy or gravitational potential energy is the potential energy an object with mass has due to the gravitational potential of its position in a gravitational field. Mathematically, it is the minimum Work (physics), mechanical work t ...
released by the sinking of the dense NiFe globules, along with any cooler, denser solid material, is thought to have been a runaway process, increasing the temperature of the protoplanet above the melting point of most components, resulting in the rapid formation of a molten iron core covered by a deep global silicate
magma Magma () is the molten or semi-molten natural material from which all igneous rocks are formed. Magma (sometimes colloquially but incorrectly referred to as ''lava'') is found beneath the surface of the Earth, and evidence of magmatism has also ...
. This event, an important process of
planetary differentiation In planetary science, planetary differentiation is the process by which the chemical elements of a planetary body accumulate in different areas of that body, due to their physical or chemical behavior (e.g. density and chemical affinities). The pr ...
, occurred at about 500 million years into the formation of the planet.


Formation of Earth's magnetosphere

This large spinning mass of super-hot metal is responsible for the creation of the
Earth's magnetic field Earth's magnetic field, also known as the geomagnetic field, is the magnetic field that extends from structure of Earth, Earth's interior out into space, where it interacts with the solar wind, a stream of charged particles emanating from ...
, the
magnetosphere In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. It is created by a celestial body with an active interior Dynamo ...
, which protects the Earth from
solar wind The solar wind is a stream of charged particles released from the Sun's outermost atmospheric layer, the Stellar corona, corona. This Plasma (physics), plasma mostly consists of electrons, protons and alpha particles with kinetic energy betwee ...
and the most harmful components of
solar radiation Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically p ...
coming from the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
. The magnetosphere protects both
Earth's atmosphere The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weathe ...
and
life Life, also known as biota, refers to matter that has biological processes, such as Cell signaling, signaling and self-sustaining processes. It is defined descriptively by the capacity for homeostasis, Structure#Biological, organisation, met ...
to the present day and distinguishes the planet from its close celestial neighbour,
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
, which no longer has a significant magnetic field nor comparable atmosphere. The term ''catastrophe'' is, here, in the mathematical sense of "a large, sudden change or discontinuity", as contrasted with "a disaster", because this event was necessary for life to emerge and evolve on Earth: without it, Earth's atmosphere would have been, as on Mars, stripped away by solar wind long before the present epoch. Another theory, however, suggests Mars did once experience its own iron catastrophe and was once shielded by a magnetosphere. By this theory Mars has simply cooled faster than the Earth, gradually solidifying its dynamic iron center, hence shutting down its magnetosphere. The finding of signs of liquid water once existing on Mars suggests that it once had its own magnetic shield to keep the water in the atmosphere of the planet from being blown into space by solar wind.


See also

* Rain-out model


References


External links


Lecture
// Columbia university, GEOLOGY V1001x Planetary science Geological processes Hadean {{geological-process-stub