HOME

TheInfoList



OR:

The invariant factors of a module over a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are princip ...
(PID) occur in one form of the
structure theorem for finitely generated modules over a principal ideal domain In mathematics, in the field of abstract algebra, the structure theorem for finitely generated modules over a principal ideal domain is a generalization of the fundamental theorem of finitely generated abelian groups and roughly states that finit ...
. If R is a PID and M a finitely generated R-module, then :M\cong R^r\oplus R/(a_1)\oplus R/(a_2)\oplus\cdots\oplus R/(a_m) for some integer r\geq0 and a (possibly empty) list of nonzero elements a_1,\ldots,a_m\in R for which a_1 \mid a_2 \mid \cdots \mid a_m. The nonnegative integer r is called the ''free rank'' or ''Betti number'' of the module M, while a_1,\ldots,a_m are the ''invariant factors'' of M and are unique up to associatedness. The invariant factors of a
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** '' The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchi ...
over a PID occur in the Smith normal form and provide a means of computing the structure of a module from a set of generators and relations.


See also

* Elementary divisors


References

* Chap.8, p.128. * Chapter III.7, p.153 of Module theory {{Abstract-algebra-stub