HOME

TheInfoList



OR:

Invadopodia are
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ...
-rich protrusions of the
plasma membrane The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extr ...
that are associated with degradation of the
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
in cancer invasiveness and metastasis. Very similar to
podosomes Podosomes are conical, actin-rich structures found as appendages on the outer surface of the plasma membrane of animal cells. Their size ranges from approximately 0.5 μm to 2.0 μm in diameter. While usually situated on the periphery of ...
, invadopodia are found in invasive cancer cells and are important for their ability to invade through the extracellular matrix, especially in cancer cell
extravasation Extravasation is the leakage of a fluid out of its contained space into the surrounding area, especially blood or blood cells from vessels. In the case of inflammation, it refers to the movement of white blood cells through the capillary wall, ...
. Invadopodia are generally visualized by the holes they create in
ECM ECM may refer to the following: Economics and commerce * Engineering change management * Equity capital markets * Error correction model, an econometric model * European Common Market Mathematics * Lenstra's Elliptic curve method for factor ...
(
fibronectin Fibronectin is a high- molecular weight (~500-~600 kDa) glycoprotein of the extracellular matrix that binds to membrane-spanning receptor proteins called integrins. Fibronectin also binds to other extracellular matrix proteins such as col ...
,
collagen Collagen () is the main structural protein in the extracellular matrix of the connective tissues of many animals. It is the most abundant protein in mammals, making up 25% to 35% of protein content. Amino acids are bound together to form a trip ...
etc.)-coated plates, in combination with
immunohistochemistry Immunohistochemistry is a form of immunostaining. It involves the process of selectively identifying antigens in cells and tissue, by exploiting the principle of Antibody, antibodies binding specifically to antigens in biological tissues. Alber ...
for the invadopodia localizing proteins such as cortactin, actin, Tks5 etc. Invadopodia can also be used as a marker to quantify the invasiveness of cancer cell lines ''in vitro'' using a
hyaluronic acid Hyaluronic acid (; abbreviated HA; conjugate base hyaluronate), also called hyaluronan, is an anionic, nonsulfated glycosaminoglycan distributed widely throughout connective, epithelial, and neural tissues. It is unique among glycosaminog ...
hydrogel A hydrogel is a Phase (matter), biphasic material, a mixture of Porosity, porous and Permeation, permeable solids and at least 10% of water or other interstitial fluid. The solid phase is a water Solubility, insoluble three dimensional network ...
assay.


History and controversy

In the early 1980s, researchers noticed protrusions coming from the ventral membrane of cultured chicken embryo fibroblasts that had been transformed by the Rous Sarcoma Virus and that they were at the sites of cell-to-
extracellular matrix In biology, the extracellular matrix (ECM), also called intercellular matrix (ICM), is a network consisting of extracellular macromolecules and minerals, such as collagen, enzymes, glycoproteins and hydroxyapatite that provide structural and bio ...
(ECM) adhesion. They termed these structures podosomes, or cellular feet, but it was later noticed that degradation of the ECM was occurring at these sites and the name invadopodia was coined to highlight the invasive nature of these protrusions. Since then, researchers have often used the two names interchangeably, but it is generally accepted that podosomes are the structures involved in normal biological processes (as when immune cells must cross tissue barriers or in bone remodeling) and invadopodia are the structures in invading cancer cells. However, there remains controversy around this nomenclature, with some scientists arguing that the two are different enough to be considered distinct structures while others argue that invadopodia are simply disregulated podosomes and cancer cells don’t simply "invent" new mechanisms. Due to this confusion and the high similarity between the two structures, many have begun to group the two under the collective term invadosomes.


Structure and formation

Invadopodia have an actin core, which is surrounded by a ring structure enriched in actin-binding proteins, adhesion molecules,
integrins Integrins are transmembrane receptors that help cell–cell and cell– extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
, and scaffold proteins. With a width of 0.5- 2.0 um and a length greater than 2 um, invadopodia are generally longer than podosomes. Lasting up to several hours, invadopedia are fairly stable and can also last much longer than podosomes. Invadopodia also penetrate deep into the ECM, while podosomes generally extend upward into the cytoplasm and do not cause as much ECM degradation. Invadopodia formation is a complex process that involves multiple signaling pathways and can be described as having three steps: initiation, stabilization, and maturation. Initiation of invadopodia involves the formation of buds in the plasma membrane and is initiated by growth factors like epidermal growth factor (EGF),
transforming growth factor beta Transforming growth factor beta (TGF-β) is a multifunctional cytokine belonging to the transforming growth factor superfamily that includes three different mammalian isoforms (TGF-β 1 to 3, HGNC symbols TGFB1, TGFB2, TGFB3) and many other ...
(TGFB) or
platelet-derived growth factor Platelet-derived growth factor (PDGF) is one among numerous growth factors that regulate cell growth and division. In particular, PDGF plays a significant role in blood vessel formation, the growth of blood vessels from already-existing bloo ...
(PDGF), which act through
phosphoinositide 3-kinase Phosphoinositide 3-kinases (PI3Ks), also called phosphatidylinositol 3-kinases, are a family of enzymes involved in cellular functions such as cell growth, proliferation, differentiation, motility, survival and intracellular trafficking, which i ...
(PI3K) to activate Src family kinases. These kinases have key roles in the formation of invadopodia and when activated, phosphorylate multiple proteins involved in invadopodia formation including Tks5, synaptjanin-2, and the Abl-family kinase Arg4. The phosphorylation of these proteins leads to the recruitment of the Neural Wiskott-Aldrich syndrome protein (N-Wasp) to invadopodia, which requires Arp2/3, to activate actin polymerization and thus invadopodia elongation. A key step during invadopodia formation is the stabilization of invadopodia, which involves the interaction of PX domain of Tks5 (a scaffold protein) with phospholipid, PI(3,4)P2 to anchor the invadopodia core to the plasma membrane. Maturation of invadopodia requires sustained actin polymerization and there are several regulators of actin polymerization involved in this step, including cofilin, fascin, Arg kinase, and mDia2. Invadopodia are considered mature when matrix metalloproteases (MMPs), specifically
MMP2 72 kDa type IV collagenase also known as matrix metalloproteinase-2 (MMP-2) and gelatinase A is an enzyme that in humans is encoded by the ''MMP2'' gene. The ''MMP2'' gene is located on chromosome 16 at position 12.2. Function Proteins of the ...
, 9, and 14, are recruited to the invadopodium to be released into the extracellular matrix.


Role in cancer metastasis

Metastasis is the leading cause of mortality in cancer patients; it relies on the ability of cancer cells to degrade the surrounding extracellular matrix and invade other tissues. The mechanisms of this process are still not completely understood, and because of the invasive properties of invadopodia, they have been investigated in this context. Indeed, invadopodia have been implicated in many cancers and cancer cells. Increased invasiveness of cancer cells correlates with invadopodia presence, and cancer cells have been observed to project them into the endothelium of blood vessels during
extravasation Extravasation is the leakage of a fluid out of its contained space into the surrounding area, especially blood or blood cells from vessels. In the case of inflammation, it refers to the movement of white blood cells through the capillary wall, ...
, an important step in metastasis. Invadopodia have also been shown to correlate with a poorer prognosis in breast cancer patients. Tks5, a protein specific for invadopodia, has been implicated in cancer invasiveness. Increased levels of tks5 have been detected in prostate cancer and overexpression of Tks5 was sufficient to induce invadopodia formation and degradation of the extracellular matrix in an Src-dependent manner. Increased Tks5 expression has been shown to correlate with poor patient prognosis in
gliomas A glioma is a type of primary tumor, primary Neoplasm, tumor that starts in the glial cells of the Human brain, brain or spinal cord. They are Malignancy, malignant but some are extremely slow to develop. Gliomas comprise about 30% of all brain ...
. In a mouse model of lung adenocarcinoma, invasive tumors were shown to have an increased expression of a long isoform of tks5 while non-metastatic tumors had a short isoform. It was also shown that overexpression of the long isoform of tks5 was sufficient to cause non-metastatic tumors to become invasive.


Therapeutic relevance

Due to the invasive nature of invadopodia in cancer cells, research has focused on targeting invadopodia as a potential therapeutic target to inhibit metastasis. Inhibiting invadopodia formation by targeting Src kinase with Saracatinib in a chicken model system showed a decreased incidence of invadopodia and decreased cancer extravasation. In mice, inhibiting invadopodia formation directly, through RNAi against tks4 or tks5, significantly reduced cancer extravasation. Screening for drug activators and inhibitors of invadopodia revealed that Cdc5 can be a target for inhibiting invadopodia formation and also that, paradoxically,
paclitaxel Paclitaxel, sold under the brand name Taxol among others, is a chemotherapy medication used to treat ovarian cancer, esophageal cancer, breast cancer, lung cancer, Kaposi's sarcoma, cervical cancer, and pancreatic cancer. It is administered b ...
, a drug commonly used to treat cancer, induces invadopodia formation. These results show potential for invadopodia as a therapeutic target, and research in this field continues.


See also

*
Podosomes Podosomes are conical, actin-rich structures found as appendages on the outer surface of the plasma membrane of animal cells. Their size ranges from approximately 0.5 μm to 2.0 μm in diameter. While usually situated on the periphery of ...


References

{{Structures of the cell membrane Cell anatomy Membrane biology