Internal heat is the
heat
In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
source from the interior of
celestial objects, such as
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s,
brown dwarf
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
s,
planet
A planet is a large, Hydrostatic equilibrium, rounded Astronomical object, astronomical body that is generally required to be in orbit around a star, stellar remnant, or brown dwarf, and is not one itself. The Solar System has eight planets b ...
s,
moons,
dwarf planet
A dwarf planet is a small planetary-mass object that is in direct orbit around the Sun, massive enough to be hydrostatic equilibrium, gravitationally rounded, but insufficient to achieve clearing the neighbourhood, orbital dominance like the ...
s, and (in the early history of the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
) even
asteroid
An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
s such as
Vesta, resulting from contraction caused by
gravity
In physics, gravity (), also known as gravitation or a gravitational interaction, is a fundamental interaction, a mutual attraction between all massive particles. On Earth, gravity takes a slightly different meaning: the observed force b ...
(the
Kelvin–Helmholtz mechanism
The Kelvin–Helmholtz mechanism is an astronomical process that occurs when the surface of a star or a planet cools. The cooling causes the internal pressure to drop, and the star or planet shrinks as a result. This compression, in turn, heats t ...
),
nuclear fusion
Nuclear fusion is a nuclear reaction, reaction in which two or more atomic nuclei combine to form a larger nuclei, nuclei/neutrons, neutron by-products. The difference in mass between the reactants and products is manifested as either the rele ...
,
tidal heating
Tidal heating (also known as tidal working or tidal flexing) occurs through the tidal friction processes: orbital and rotational energy is dissipated as heat in either (or both) the surface ocean or interior of a planet or satellite. When an objec ...
, core solidification (
heat of fusion released as molten core material solidifies), and
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. The amount of internal heating depends on
mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
; the more massive the object, the more internal heat it has; also, for a given density, the more massive the object, the greater the ratio of mass to surface area, and thus the greater the retention of internal heat. The internal heating keeps celestial objects warm and active.
Planets
Terrestrial planets
In the early history of the Solar System,
radioactive isotope
A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess numbers of either neutrons or protons, giving it excess nuclear energy, and making it unstable. This excess energy can be used in one of three ...
s having a
half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
on the order of a few million years (such as
aluminium-26
Aluminium-26 (26Al, Al-26) is a radioactive isotope of the chemical element aluminium, decaying by either positron emission or electron capture to stable magnesium-26. The half-life of 26Al is 717,000 years. This is far too short for the isotope ...
and
iron-60) were sufficiently abundant to produce enough heat to cause internal melting of some moons and even some asteroids, such as Vesta noted above. After these radioactive isotopes had decayed to insignificant levels, the heat generated by longer-lived radioactive isotopes (such as
potassium-40
Potassium-40 (K) is a long lived and the main naturally occurring radioactive isotope of potassium. Its half-life is 1.25 billion years. It makes up about 0.012% (120 parts-per notation, ppm) of natural potassium.
Potassium-40 undergoes four dif ...
,
thorium-232
Thorium-232 () is the main naturally occurring isotope of thorium, with a relative abundance of 99.98%. It has a half life of 14.05 billion years, which makes it the longest-lived isotope of thorium. It decays by alpha decay to radium-228; its de ...
, and
uranium-235 and uranium-238) was insufficient to keep these bodies molten unless they had an alternative source of internal heating, such as tidal heating. Thus, Earth's
Moon
The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
, which has no alternative source of internal heating is now geologically dead, whereas a moon as small as
Enceladus that has sufficient tidal heating (or at least had it recently) and some remaining radioactive heating, is able to maintain an active and directly detectable
cryovolcanism.
The internal heating within
terrestrial planet
A terrestrial planet, tellurian planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate, rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to ...
s powers
tectonic
Tectonics ( via Latin ) are the processes that result in the structure and properties of the Earth's crust and its evolution through time. The field of ''planetary tectonics'' extends the concept to other planets and moons.
These processes ...
and
volcanic
A volcano is commonly defined as a vent or fissure in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.
On Earth, volcanoes are most often fo ...
activities. Of the terrestrial planets in the Solar System,
Earth
Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
has the most internal heating because it is the largest.
Mercury and
Mars
Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
have no ongoing visible surface effects of internal heating because they are only 5 and 11% the mass of Earth respectively; they are nearly "geologically dead" (however, see
Mercury's magnetic field and
Geological history of Mars). Earth, being more massive, has a great enough ratio of mass to surface area for its internal heating to drive
plate tectonics
Plate tectonics (, ) is the scientific theory that the Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago. The model builds on the concept of , an idea developed durin ...
and
volcanism
Volcanism, vulcanism, volcanicity, or volcanic activity is the phenomenon where solids, liquids, gases, and their mixtures erupt to the surface of a solid-surface astronomical body such as a planet or a moon. It is caused by the presence of a he ...
.
Giant planets
The
giant planet
A giant planet, sometimes referred to as a jovian planet (''Jove'' being another name for the Roman god Jupiter (mythology), Jupiter), is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling ...
s have much greater internal heating than terrestrial planets, due to their greater mass and greater compressibility making more energy available from gravitational contraction.
Jupiter
Jupiter is the fifth planet from the Sun and the List of Solar System objects by size, largest in the Solar System. It is a gas giant with a Jupiter mass, mass more than 2.5 times that of all the other planets in the Solar System combined a ...
, the most massive planet in the Solar System, has the most internal heating, with core temperature estimated to be 36,000 K. For the outer planets of the Solar System, internal heating powers the
weather
Weather is the state of the atmosphere, describing for example the degree to which it is hot or cold, wet or dry, calm or stormy, clear or cloud cover, cloudy. On Earth, most weather phenomena occur in the lowest layer of the planet's atmo ...
and
wind
Wind is the natural movement of atmosphere of Earth, air or other gases relative to a planetary surface, planet's surface. Winds occur on a range of scales, from thunderstorm flows lasting tens of minutes, to local breezes generated by heatin ...
instead of
sunlight
Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
that powers the weather for terrestrial planets. The internal heating within giant planets raise temperatures higher than
effective temperature
The effective temperature of a body such as a star or planet is the temperature of a black body that would emit the same total amount of electromagnetic radiation. Effective temperature is often used as an estimate of a body's surface temperature ...
s, as in the case of Jupiter, this makes 40 K warmer than given effective temperature. A combination of external and internal heating (which may be a combination of tidal heating and electromagnetic heating) is thought to make giant planets that orbit very close to their stars (
hot Jupiter
Hot Jupiters (sometimes called hot Saturns) are a class of gas giant exoplanets that are inferred to be physically similar to Jupiter (i.e. Jupiter analogue, Jupiter analogues) but that have very short orbital periods (). The close proximity to t ...
s) into "
puffy planets" (external heating is not thought to be sufficient by itself).
Brown dwarfs
Brown dwarf
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main sequence, main-sequence stars. Their mass is approximately 13 to 80 Jupiter mass, times that of Jupiter ()not big en ...
s have greater internal heating than gas giants but not as great as stars. The internal heating within brown dwarfs (initially generated by gravitational contraction) is great enough to ignite and sustain fusion of
deuterium
Deuterium (hydrogen-2, symbol H or D, also known as heavy hydrogen) is one of two stable isotopes of hydrogen; the other is protium, or hydrogen-1, H. The deuterium nucleus (deuteron) contains one proton and one neutron, whereas the far more c ...
with
hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
to
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
; for the largest brown dwarfs, it is also enough to ignite and sustain fusion of
lithium
Lithium (from , , ) is a chemical element; it has chemical symbol, symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard temperature and pressure, standard conditions, it is the least dense metal and the ...
with hydrogen, but not fusion of hydrogen with itself. Like gas giants, brown dwarfs can have weather and wind powered by internal heating. Brown dwarfs are substellar objects not massive enough to sustain hydrogen-1 fusion reactions in their cores, unlike main-sequence stars. Brown dwarfs occupy the mass range between the heaviest gas giants and the lightest stars, with an upper limit around 75 to 80 Jupiter masses (MJ). Brown dwarfs heavier than about 13 MJ are thought to fuse deuterium and those above ~65 MJ, fuse lithium as well.
Stars
The internal heating within stars is so great that (after an initial phase of gravitational contraction) they ignite and sustain thermonuclear reaction of hydrogen (with itself) to form
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, and can make heavier
elements (see
Stellar nucleosynthesis
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a ...
). The
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
for example has a core temperature of 13,600,000 K. The more massive and older the stars are, the more internal heating they have. During the end of its lifecycle, the internal heating of a star increases dramatically, caused by the change of composition of the core as successive fuels for fusion are consumed, and the resulting contraction (accompanied by faster consumption of the remaining fuel). Depending upon the mass of the star, the core may become hot enough to fuse helium (forming
carbon
Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
and traces of heavier elements), and for sufficiently massive stars even large quantities of heavier elements. Fusion to produce elements heavier than
iron
Iron is a chemical element; it has symbol Fe () and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, forming much of Earth's o ...
and
nickel
Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slo ...
no longer produces energy, and since stellar cores massive enough to attain the temperatures required to produce these elements are too massive to form stable
white dwarf
A white dwarf is a Compact star, stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very density, dense: in an Earth sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place i ...
stars, a
core collapse supernova results, producing a
neutron star
A neutron star is the gravitationally collapsed Stellar core, core of a massive supergiant star. It results from the supernova explosion of a stellar evolution#Massive star, massive star—combined with gravitational collapse—that compresses ...
or a
black hole
A black hole is a massive, compact astronomical object so dense that its gravity prevents anything from escaping, even light. Albert Einstein's theory of general relativity predicts that a sufficiently compact mass will form a black hole. Th ...
, depending upon the mass. Heat generated by the collapse is trapped within a neutron star and only escapes slowly, due to the small surface area; heat cannot be conducted out of a black hole at all (however, see
Hawking radiation
Hawking radiation is black-body radiation released outside a black hole's event horizon due to quantum effects according to a model developed by Stephen Hawking in 1974.
The radiation was not predicted by previous models which assumed that onc ...
).
Bibliography
*{{cite book , last=Bennett , first=Jeffrey , author-link= , date=2017 , title=Life in the Universe , last2=Shostak , first2=Seth , last3=Schneider , first3=Nicholas , last4=MacGregor , first4=Meredith , url=https://press.princeton.edu/books/paperback/9780691241784/life-in-the-universe-5th-edition , location= , publisher=Princeton University Press , page= , isbn=
External links
The Heat History of the Earth
Planetary science
Thermodynamics