HOME

TheInfoList



OR:

Interband cascade lasers (ICLs) are a type of
laser diode file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emittin ...
that can produce coherent radiation over a large part of the
mid-infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those of ...
region of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
. They are fabricated from
epitaxially Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
-grown
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
heterostructures composed of layers of
indium arsenide Indium arsenide, InAs, or indium monoarsenide, is a narrow-bandgap semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is similar in properties to gallium ars ...
(InAs),
gallium antimonide Gallium antimonide (GaSb) is a semiconducting compound of gallium and antimony of the III-V family. It has a room temperature lattice constant of about 0.610 nm. It has a room temperature direct bandgap of approximately 0.73 eV. History The int ...
(GaSb), aluminum antimonide (AlSb), and related alloys. These lasers are similar to quantum cascade lasers (QCLs) in several ways. Like QCLs, ICLs employ the concept of bandstructure engineering to achieve an optimized laser design and reuse injected
electrons The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
to emit multiple photons. However, in ICLs,
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
are generated with interband transitions, rather than the intersubband transitions used in QCLs. Consequently, the rate at which the carriers injected into the upper laser subband thermally relax to the lower subband is determined by interband Auger, radiative, and Shockley-Read carrier recombination. These processes typically occur on a much slower time scale than the longitudinal optical
phonon A phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, specifically in solids and some liquids. In the context of optically trapped objects, the quantized vibration mode can be defined a ...
interactions that mediates the intersubband relaxation of injected electrons in mid-IR QCLs. The use of interband transitions allows laser action in ICLs to be achieved at lower electrical input powers than is possible with QCLs. The basic concept of an ICL was proposed by Rui Q. Yang in 1994. The key insight he had was that the incorporation of a type-II heterostructure similar to those used in interband resonant tunneling diodes would facilitate the possibility of cascade lasers that use interband transitions for photon generation. Further improvement to the design and development of the technology was carried out by Yang and his collaborators at several institutions, as well as by groups at the
Naval Research Laboratory The United States Naval Research Laboratory (NRL) is the corporate research laboratory for the United States Navy and the United States Marine Corps. Located in Washington, DC, it was founded in 1923 and conducts basic scientific research, appl ...
and other institutions. ICLs lasing in
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particl ...
(cw) mode at room temperature were first demonstrated in 2008. This laser had an emission wavelength of 3.75 μm. Subsequently, cw operation of ICLs at room temperature has been demonstrated with emission wavelengths ranging from 2.9 μm to 5.7 μm. ICLs at cooler temperatures have been demonstrated with emission wavelengths between 2.7 μm to 11.2 μm. ICLs operating in cw mode at
ambient temperature Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity, air circulation, and ...
are able to achieve lasing at much lower input powers than competing mid-IR semiconductor laser technologies.


Theory of operation

In a standard multiple quantum well laser, the active
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occup ...
s used to generate photons are connected in parallel. Consequently, a large
current Currents, Current or The Current may refer to: Science and technology * Current (fluid), the flow of a liquid or a gas ** Air current, a flow of air ** Ocean current, a current in the ocean *** Rip current, a kind of water current ** Current (hydr ...
is required to replenish each active well with electrons as it emits light. In a cascade laser, the wells are connected in series, meaning that the voltage is higher but the current is lower. This tradeoff is beneficial because the input power dissipated by the device's series resistance, ''Rs'', is equal to ''I2Rs'', where ''I'' is the electric current flowing through the device. Thus, the lower current in a cascade laser results in less power loss from the device's series resistance. However, devices with more stages tend to have poorer thermal performance, since more
heat In thermodynamics, heat is energy in transfer between a thermodynamic system and its surroundings by such mechanisms as thermal conduction, electromagnetic radiation, and friction, which are microscopic in nature, involving sub-atomic, ato ...
is generated in locations farther from the
heat sink A heat sink (also commonly spelled heatsink) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is thermal management (electronics), ...
. The optimal number of stages depends on the wavelength, material used, and several other factors. The optimization of this number is guided by simulations, but ultimately determined empirically by studying the experimental laser performance. ICLs are fabricated from semiconductor heterostructures grown using
molecular beam epitaxy Molecular-beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. MBE is widely used in the manufacture of semiconductor devices, including transistors. MBE is used to make diodes and MOSFETs (MOS field-effect transis ...
(MBE). The materials used in the structure are InAs, GaSb, AlSb, and related alloys. These three binary materials are very closely lattice matched with lattice parameters close to 6.1 Å. Thus, these materials can be incorporated together in the same heterostructure without introducing a significant amount of strain. The MBE growth is typically done on either a GaSb or InAs substrate. The entire epitaxial structure consists of several cascade stages that are sandwiched between two separate confinement layers (SCLs), with other materials enclosing the SCLs to provide optical cladding. In addition to producing light, the layered epitaxial structure must also act as a
waveguide A waveguide is a structure that guides waves by restricting the transmission of energy to one direction. Common types of waveguides include acoustic waveguides which direct sound, optical waveguides which direct light, and radio-frequency w ...
so that the cascade stages amplify guided optical modes.


Cascade stage design

In each cascade stage, the thin InAs layers act as confined quantum well (QW) layers for electrons and barriers for
holes A hole is an opening in or through a particular medium, usually a solid body. Holes occur through natural and artificial processes, and may be useful for various purposes, or may represent a problem needing to be addressed in many fields of en ...
. The GaSb (or GaInSb) layers conversely act as QWs for holes and barriers for electrons, while the AlSb layers serve as barriers for both electrons and holes. The key feature that enables the realization of cascading within an interband diode is the so-called "type-II", or broken-gap, band alignment between InAs and GaSb. Whereas in the more usual class of type-I QWs both the electrons and holes are confined within the same material layer, the InAs-GaSb system is type-II because the
conduction band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
minimum of InAs lies at a lower energy than the
valence band In solid-state physics, the valence band and conduction band are the bands closest to the Fermi level, and thus determine the electrical conductivity of the solid. In nonmetals, the valence band is the highest range of electron energies in ...
maximum of GaSb. This less common arrangement makes it easy to re-inject electrons from the valence band of one stage of the ICL into the conduction band of the next stage via simple elastic
scattering In physics, scattering is a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiat ...
. Each cascade stage effectively acts as an individual photon generator. A single stage is composed of an electron injector, a hole injector, and an active gain region consisting of one hole QW and one or two electron QWs. When the device is biased, excess electrons and holes are generated and flow into the
active region In solar physics and observation, an active region is a temporary feature in the Sun's atmosphere characterized by a strong and complex magnetic field. They are often associated with sunspots and are commonly the source of violent eruptions suc ...
, where they recombine and emit light. In order to minimize optical losses at the semimetallic interface forming the boundary between the electron and hole injectors, a layer of AlSb is placed between the InAs and GaSb layers to prevent interband reabsorption of the generated photons. A typical active region employs the so-called "W" quantum well configuration. In this design, the GaInSb hole QW is sandwiched between two InAs electron QWs, which are in turn surrounded by two AlSb barrier layers. This arrangement maximizes the optical gain by increasing the spatial overlap between the electron and hole wavefunctions that are nominally separated in different layers. The lasing wavelength, as determined by the
bandgap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the ...
created between the ground state electron and hole energy levels, can be varied simply by changing the InAs electron QW thickness (whereas it is much less sensitive to the hole QW thickness). The two injector regions are each designed to efficiently transfer its namesake carriers (electrons or holes) from the semimetallic interface to the active region. They must also double as rectifying barriers for the opposite type of carrier in order to prevent inter-stage leakage currents. The total injector (electron injector plus hole injector) should also be sufficiently thick overall to prevent the
electric field An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
s forming under bias from becoming great enough to induce
dielectric breakdown In electronics, electrical breakdown or dielectric breakdown is a process that occurs when an electrically insulating material (a dielectric), subjected to a high enough voltage, suddenly becomes a conductor and current flows through it. All ...
of the material. The electron injector is usually made longer because of the relatively fast inter-well scattering rate of electrons compared to that of holes. This ensures a smaller series resistance contribution from the total injector transport. The hole injector is composed of GaSb/AlSb quantum wells. It is made just thick enough (typically with just one or two wells) to ensure effective suppression of electron tunneling from the active region to the electron injector of the next stage. The electron injector typically consists of a longer series of InAs/AlSb quantum wells. To maximize the InAs/AlSb superlattice miniband width, the InAs layer thicknesses are varied across the injector so that their ground state energies nearly align when the device is biased. The quantum well energy gaps in the injector must be large enough to preclude reabsorption of the photons generated by the active quantum wells. An additional feature that differentiates the ICL from all other laser diodes is its provision for electrically-pumped operation without a p-n junction. This is possible because the injectors function as rectifying barriers that keep the current flowing in a single direction. Nevertheless, it is highly advantageous to
dope Dope may refer to: Chemistry Biochemistry * Dope, a slang word for a euphoria-producing drug, particularly: ** Cocaine ** Cannabis (drug) ** Heroin ** Opioid * DOPE, or 1,2-Dioleoyl-''sn''-glycero-3-phosphoethanolamine, a phospholipid * Discret ...
certain layers in each cascade stage as a means of controlling the active electron and hole densities, via a design technique called "carrier rebalancing." While the most favorable combination of electron and hole populations depends on the relative strengths of various free carrier absorption and Auger recombination processes, the studies done thus far indicate that the ICL performance is optimal when at threshold the two concentrations are roughly equal. Since the hole population tends to substantially exceed the electron population in undoped or moderately-doped ICLs, carrier rebalancing is achieved by heavily n-doping the electron injector (typically, with Si) so as to add electrons to the active QWs.


Optical waveguide

The gain within a given waveguide required to reach the lasing threshold is given by the equation: :g_ = \frac where αwg is the waveguide loss, αmirr is the mirror loss, and Γ is the optical confinement factor. The mirror loss is due to photons escaping through the mirrors of the
optical resonator An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that confines light waves similarly to how a cavity resonator confines microwaves. Optical cavities are a major component of lasers, ...
. Waveguide losses can be due to absorption in the active, separate confinement, optical cladding materials, and
metal A metal () is a material that, when polished or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, electricity and thermal conductivity, heat relatively well. These properties are all associated wit ...
contacts (if the claddings are not thick enough), or result from scattering at the ridge sidewalls. The confinement factor is that percentage of the optical energy concentrated in the cascade stages. As with other semiconductor lasers, ICLs have a tradeoff between optical loss in the waveguide and Γ. The overall goal of waveguide design is to find the proper structure that minimizes the threshold gain. The choice of waveguide material depends on the substrate used. For ICLs grown on GaSb, the separate confinement layers are typically low-doped GaSb while the optical cladding layers are InAs/AlSb superlattices lattice-matched to the GaSb substrate. The bottom cladding must be fairly thick to prevent leakage of the guided mode into the substrate, since the refractive index of GaSb (about 3.8) is larger than the effective index of the lasing mode (typically 3.4-3.6). An alternative waveguide configuration that is suitable for growth on InAs substrates uses highly ''n''-doped InAs for the optical cladding. The high electron density in this layer lowers the refractive index in accordance with the
Drude model The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current and voltage d ...
. In this approach, the epitaxial structure is grown on an ''n''-type InAs substrate and it also utilizes InAs for the separate confinement layers. For longer-wavelength operation, advantages include the much higher
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
of bulk InAs as compared to a short-period InAs/AlSb superlattice, as well as a much thinner cladding layer due its larger index contrast with the active region. This shortens the MBE growth time, and also further improves the thermal dissipation. However, the waveguide must be designed carefully to avoid excessive free carrier absorption loss in the heavily-doped layers.


Current status of ICL performance

ICLs emitting at 3.7 um have operated in cw mode up to a maximum temperature of 118 °C. A maximum cw output power of nearly 0.5 W has been demonstrated at room temperature, with 200-300 mW in a nearly-diffraction-limited beam. A maximum room-temperature cw wall-plug efficiency of nearly 15% has also been achieved. While QCLs typically require input electrical powers of nearly 1 W and higher to operate at room temperature, ICLs are able to lase for input powers as low as 29 mW owing to the much longer interband carrier lifetime. Room-temperature cw operation with low dissipated powers can be achieved for wavelengths between approximately 3.0 um and 5.6 um. The figure on the right shows the performance characteristics of narrow ridge-waveguide interband cascade lasers at room temperature operating in cw mode. Specifically, the figure shows plots of the amount of power emitted by lasers with different ridge widths for a given injection current. Each of these lasers had five cascade stages and cavity lengths of 4 mm. These lasers were mounted so that the top of the epitaxial structure (rather than the substrate) was in contact with the
copper Copper is a chemical element; it has symbol Cu (from Latin ) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkish-orang ...
heat sink (typically referred to as an epitaxial side down configuration) in order to achieve optimal heat dissipation. In addition, they were fabricated with corrugated sidewalls. The sidewall corrugation lowers optical losses by ensuring fewer photons are generated in the higher-order optical modes that are more susceptible to optical scattering losses.


Applications

Mid-infrared lasers are important tools for
spectroscopic Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectrosc ...
sensing applications. Many
molecules A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry ...
such as those in pollution and
greenhouse gases Greenhouse gases (GHGs) are the gases in the atmosphere that raise the surface temperature of planets such as the Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. T ...
have strong rotational and vibrational
resonances Resonance is a phenomenon that occurs when an object or system is subjected to an external force or vibration whose frequency matches a resonant frequency (or resonance frequency) of the system, defined as a frequency that generates a maximu ...
in the mid-infrared region of the spectrum. For most sensing applications, the laser wavelength must also be within one of the
atmospheric window An atmospheric window is a region of the electromagnetic spectrum that can pass through the atmosphere of Earth The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans) ...
to avoid signal attenuation. An important requirement for this type of application is that single-mode emission is obtained. With ICLs, this can be done by making
distributed feedback laser A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensi ...
s. A distributed-feedback ICL, designed for the excitation of
methane Methane ( , ) is a chemical compound with the chemical formula (one carbon atom bonded to four hydrogen atoms). It is a group-14 hydride, the simplest alkane, and the main constituent of natural gas. The abundance of methane on Earth makes ...
gas, was developed at
NASA Jet Propulsion Laboratory The Jet Propulsion Laboratory (JPL) is a federally funded research and development center (FFRDC) in La Cañada Flintridge, California, Crescenta Valley, United States. Founded in 1936 by California Institute of Technology (Caltech) research ...
and included as an instrument on the tunable laser spectrometer on the
Curiosity rover ''Curiosity'' is a car-sized Mars rover Space exploration, exploring Gale (crater), Gale crater and Mount Sharp on Mars as part of NASA's Mars Science Laboratory (MSL) mission. ''Curiosity'' was launched from Cape Canaveral Space Force Station ...
that was sent to explore the environment of Mars. A more recent distributed feedback ICL emitted up to 27 mW in a single spectral mode at 3.79 μm when operated at 40 °C, and 1 mW for operation at 80 °C. Recent developments in free-space optical communications have enabled data transmission at multi-gigabit-per-second rates, supported by advances in interband cascade laser technology. In the mid-wave infrared (MWIR) range, interband cascade lasers have demonstrated energy-efficient, directly modulated transmission links with high performance. For example, a 4.2 µm ICL on a native substrate, combined with an interband cascade infrared photodetector, has achieved data rates of up to 16 Gbit/s using four-level pulse amplitude modulation (PAM-4) and 14 Gbit/s with on-off keying (OOK) over a 2-meter free-space link, maintaining bit error rates below 4% through the application of digital signal processing.https://opg.optica.org/prj/fulltext.cfm?uri=prj-11-4-582&id=528467


References


External links


Jet Propulsion Lab webpage on Tunable Laser Spectrometer for Mars Science Mission


See also

*
Laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word ''laser'' originated as an acronym for light amplification by stimulated emission of radi ...
*
Laser diode file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emittin ...
*
Quantum Cascade Laser Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, ...
*
Tunable diode laser absorption spectroscopy Tunable diode laser absorption spectroscopy (TDLAS, sometimes referred to as TDLS, TLS or TLAS) is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode l ...
{{DEFAULTSORT:Interband Cascade Laser Semiconductor lasers Semiconductor devices American inventions Canadian inventions