Infant Visual Development
   HOME

TheInfoList



OR:

Infant vision concerns the development of visual ability in human
infant In common terminology, a baby is the very young offspring of adult human beings, while infant (from the Latin word ''infans'', meaning 'baby' or 'child') is a formal or specialised synonym. The terms may also be used to refer to juveniles of ...
s from birth through the first years of life. The aspects of human vision which develop following birth include visual acuity, tracking, color perception, depth perception, and
object recognition Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the ...
. Unlike many other
sensory systems The sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved i ...
, the human
visual system The visual system is the physiological basis of visual perception (the ability to perception, detect and process light). The system detects, phototransduction, transduces and interprets information concerning light within the visible range to ...
– components from the eye to neural circuits – develops largely after birth, especially in the first few years of life. At birth, visual structures are fully present yet immature in their potentials. From the first moment of life, there are a few innate components of an infant's visual system.
Newborns In common terminology, a baby is the very young offspring of adult human beings, while infant (from the Latin word ''infans'', meaning 'baby' or 'child') is a formal or specialised synonym. The terms may also be used to refer to juveniles of ...
can detect changes in brightness, distinguish between stationary and
kinetic Kinetic (Ancient Greek: κίνησις “kinesis”, movement or to move) may refer to: * Kinetic theory, describing a gas as particles in random motion * Kinetic energy, the energy of an object that it possesses due to its motion Art and ente ...
objects, as well as follow kinetic objects in their visual fields. However, many of these areas are very poorly developed. With physical improvements such as increased distances between the
cornea The cornea is the transparency (optics), transparent front part of the eyeball which covers the Iris (anatomy), iris, pupil, and Anterior chamber of eyeball, anterior chamber. Along with the anterior chamber and Lens (anatomy), lens, the cornea ...
and
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
, increased
pupil The pupil is a hole located in the center of the iris of the eye that allows light to strike the retina.Cassin, B. and Solomon, S. (1990) ''Dictionary of Eye Terminology''. Gainesville, Florida: Triad Publishing Company. It appears black becau ...
dimensions, and strengthened
cones In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the ''apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines, ...
and rods, an infant's visual ability improves drastically. The neuro-pathway and physical changes that underlie these improvements in vision remain a strong focus in research. Because of an infant's inability to verbally express their visual field, growing research in this field relies heavily on nonverbal cues including an infant's perceived ability to detect patterns and visual changes. The major components of the visual system can be broken up into
visual acuity Visual acuity (VA) commonly refers to the clarity of visual perception, vision, but technically rates an animal's ability to recognize small details with precision. Visual acuity depends on optical and neural factors. Optical factors of the eye ...
, depth perception, color sensitivity, and light sensitivity. By providing a better understanding of the visual system, future medical treatments for infant and pediatric
ophthalmology Ophthalmology (, ) is the branch of medicine that deals with the diagnosis, treatment, and surgery of eye diseases and disorders. An ophthalmologist is a physician who undergoes subspecialty training in medical and surgical eye care. Following a ...
can be established. By additionally creating a timeline on visual perception development in "normal" newborns and infants, research can shed some light on abnormalities that often arise and interfere with ideal sensory growth and change.


Development


Acuity

Visual acuity Visual acuity (VA) commonly refers to the clarity of visual perception, vision, but technically rates an animal's ability to recognize small details with precision. Visual acuity depends on optical and neural factors. Optical factors of the eye ...
, the sharpness of the eye to fine detail, is a major component of a human's visual system. It requires not only the muscles of the eye – the
muscles of orbit The extraocular muscles, or extrinsic ocular muscles, are the seven extrinsic muscles of the eye in humans and other animals. Six of the extraocular muscles, the four recti muscles, and the superior and inferior oblique muscles, control movement ...
and the ciliary muscles – to be able to focus on a particular object through contraction and relaxation, but other parts of the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
such as the
fovea Fovea () (Latin for "pit"; plural foveae ) is a term in anatomy. It refers to a pit or depression in a structure. Human anatomy *Fovea centralis of the retina * Fovea buccalis or dimple * Fovea of the femoral head * Trochlear fovea of the fr ...
to project a clear image on the retina. The muscles that initiate movement start to strengthen from birth to 2 months, at which point infants have control of their eye. However, images still appear unclear at two months due to other components of the visual system like the fovea and retina and the brain circuitry that are still in their developmental stages. This means that even though an infant is able to focus on a clear image on the retina, the fovea and other visual parts of the brain are too immature to transmit a clear image. Visual acuity in newborns is very limited as well compared to adults – being 12 to 25 times worse than that of a normal adult. It is important to note that the distance from the
cornea The cornea is the transparency (optics), transparent front part of the eyeball which covers the Iris (anatomy), iris, pupil, and Anterior chamber of eyeball, anterior chamber. Along with the anterior chamber and Lens (anatomy), lens, the cornea ...
at the front of the infant's eye to the
retina The retina (; or retinas) is the innermost, photosensitivity, light-sensitive layer of tissue (biology), tissue of the eye of most vertebrates and some Mollusca, molluscs. The optics of the eye create a focus (optics), focused two-dimensional ...
which is at the back of eye is 16–17 mm at birth, 20 to 21 mm at one year, and 23–25 mm in adolescence and adulthood. This results in smaller retinal images for infants. The vision of infants under one month of age ranges from 6/240 to 6/60 (20/800 to 20/200). By two months, visual acuity improves to 6/45 (20/150). By four months, acuity improves by a factor of 2 – calculated to be 6/18 (20/60) vision. As the infant grows, the acuity reaches the healthy adult standard of 6/6 (20/20) at six months. One major method used to measure visual acuity during infancy is by testing an infant's sensitivity to visual details such as a set of black strip lines in a pictorial image. Studies have shown that most one-week-old infants can discriminate a gray field from a fine black stripped field at a distance of one foot away. This means that most infants will look longer at patterned visual stimuli instead of a plain, pattern-less stimuli. Gradually, infants develop the ability to distinguish strips of lines that are closer together. Therefore, by measuring the width of the strips and their distance from an infant's eye, visual acuity can be estimated, with detection of finer strips indicating better acuity. When examining an infants preferred visual stimuli, it was found that one-month-old infants often gazed mostly at prominent, sharp features of an object – whether it is a strong defined curve or an edge. Beginning at two months old, infants begin to direct their
saccades In vision science, a saccade ( ; ; ) is a quick, simultaneous movement of both eyes between two or more phases of focal points in the same direction. In contrast, in smooth-pursuit movements, the eyes move smoothly instead of in jumps. Control ...
to the interior of the object, but still focusing on strong features. Additionally, infants starting from one month of age have been found to prefer visual stimuli that are in motion rather than stationary.


Faces

Newborns are exceptionally capable of facial discrimination and recognition shortly after birth. Therefore, it is not surprising that infants develop strong
facial recognition Facial recognition or face recognition may refer to: *Face detection, often a step done before facial recognition *Face perception, the process by which the human brain understands and interprets the face *Pareidolia, which involves, in part, seein ...
of their mother. Studies have shown that newborns have a preference for their mothers' faces two weeks after birth. At this stage, infants would focus their visual attention on pictures of their own mother for a longer period than a picture of complete strangers. Studies have shown that infants even as early as four days old look longer at their mothers' face than at those of strangers only when the mother is not wearing a head scarf. This may suggest that hairline and outer perimeter of the face play an integral part in the newborn's face recognition. According to Maurer and Salapateck, a one-month-old baby scans the outer contour of the face, with strong focus on the eyes, while a two-month-old scans more broadly and focuses on the features of the face, including the eyes and mouth. When comparing facial features across species, it was found that infants of six months were better at distinguishing facial information of both humans and monkeys than older infants and adults. They found that both nine-month-olds and adults could discriminate between pictures of human faces; however, neither infants nor adults had the same capabilities when it came to pictures of monkeys. On the other hand, six-month-old infants were able to discriminate both facial features on human faces and on monkey faces. This suggests that there is a narrowing in face processing, as a result of neural network changes in early
cognition Cognition is the "mental action or process of acquiring knowledge and understanding through thought, experience, and the senses". It encompasses all aspects of intellectual functions and processes such as: perception, attention, thought, ...
. Another explanation is that infants likely have no experience with monkey faces and relatively little experience with human faces. This may result in a more broadly tuned face recognition system and, in turn, an advantage in recognizing facial identity in general (i.e., regardless of species). In contrast, healthy adults due to their interaction with people on a frequent basis have fine tuned their sensitivity to facial information of humans – which has led to cortical specialization.


Depth perception

To perceive depth, infants as well as adults rely on several signals such as distances and
kinetics Kinetics (, ''movement'' or ''to move'') may refer to: Science and medicine * Kinetics (physics), the study of motion and its causes ** Rigid body kinetics, the study of the motion of rigid bodies * Chemical kinetics, the study of chemical ...
. For instance, the fact that objects closer to the observer fill more space in our visual field than farther objects provides some cues into depth perception for infants. Evidence has shown that newborns' eyes do not work in the same fashion as older children or adults – mainly due to poor coordination of the eyes. Newborn's eyes move in the same direction only about half of the time. The strength of eye muscle control is positively correlated to achieve depth perception. Human eyes are formed in such a way that each eye reflects a stimulus at a slightly different angle thereby producing two images that are processed in the brain. These images provide the essential visual information regarding 3D features of the external world. Therefore, an infant's ability to control their eye movement and converge on one object is critical for developing depth perception. One of the important discoveries of infant depth perception is thanks to researchers
Eleanor J. Gibson Eleanor Jack Gibson (7 December 1910 – 30 December 2002) was an American psychologist who focused on reading development and perceptual learning in infants. Gibson began her career at Smith College as an instructor in 1932, publishing her firs ...
and R.D. Walk.Gibson, E.J.; Walk, R.D. (1960)
"Visual Cliff"
. Scientific American.
Gibson and Walk developed an apparatus called the
visual cliff The visual cliff is an apparatus created by psychologists Eleanor J. Gibson and Richard D. Walk at Cornell University to investigate depth perception in human and other animal species. It consists of a sturdy surface that is flat but has the appe ...
that could be used to investigate visual depth perception in infants. In short, infants were placed on a centerboard to one side which contained an illusory steep drop (“deep side”) and another which contained a platform of the centerboard (“shallow side”). In reality, both sides, covered in glass, was safe for infants to trek. From their experiment, Gibson and Walk found that a majority of infants ranging from 6 to 14 months-old would not cross from the shallow side to the deep side due to their innate sense of fear to heights. From this experiment, Gibson and Walk concluded that by six months an infant has developed a sense of depth. However, this experiment was limited to infants that could independently crawl or walk. To overcome the limitations of testing non-locomotive infants, Campos and his colleges devised an experiment that was dependent on heart rate reactions of infants when placed in environments that reflected different depth scenarios. Campos and his colleagues placed six week-old infants on the “deep end” of the visual cliff, the six week-old infants' heart rate decreased and a sense of fascination was seen in the infants. However, when seven month-old infants were lowered down on the same “deep end” illusion, their heart rates accelerated rapidly and they started to whimper. Gibson and Walk concluded that infants had developed a sense of visual depth prior to beginning locomotion. Therefore, it could be concluded that sometime at the spark of crawling around 4–5 months, depth perception begins to strongly present itself.


Cues

From an infant's standpoint, depth perception can be inferred using three means:
binocular Binocular may refer to: Science and technology * Binocular vision, seeing with two eyes * Binoculars, a telescopic tool * Binocular microscope, binocular viewing of objects through a single objective lens Other uses * Binocular (horse), a thoroug ...
, static, and kinetic cues. As mentioned previous, humans are binocular and each eye views the external world with a different angle – providing essential information into depth. The convergence of each eye on a particular object and the
stereopsis Binocular vision is seeing with two eyes, which increases the size of the Visual field, visual field. If the visual fields of the two eyes overlap, binocular #Depth, depth can be seen. This allows objects to be recognized more quickly, camouflage ...
, also known as the retinal disparity among two objects, provides some information for infants older than ten weeks. With binocular vision development, infants between four and five months also develop a sense of size and shape constancy objects, regardless of the objects location and orientation in space.Bornstein, M. & Lamb, M. (1992) Developmental Psychology. 3rd ed. Lawrence Erlbaum Associates, NJ. From static cues based upon monocular vision, infants older of five month of age have the ability to predict depth perception from pictorial position of objects. In other words, edges of closer objects overlap objects in the distance. Lastly, kinetic cues are another factor in depth perception for humans, especially young infants. Infants ranging from three to five months are able to move when an object approaches them in the intent to hit them – implying that infants have depth perception.


Color vision

Color vision Color vision, a feature of visual perception, is an ability to perceive differences between light composed of different frequencies independently of light intensity. Color perception is a part of the larger visual system and is mediated by a co ...
improves steadily over the first year of life for humans due to strengthening of the
cones In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the ''apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines, ...
of the eyes. Like adults, infant color vision derives from three
cone cell Cone cells or cones are photoreceptor cells in the retina of the vertebrate eye. Cones are active in daylight conditions and enable photopic vision, as opposed to rod cells, which are active in dim light and enable scotopic vision. Most v ...
types with long-, mid- and short-wavelength
opsin Animal opsins are G-protein-coupled receptors and a group of proteins made light-sensitive via a chromophore, typically retinal. When bound to retinal, opsins become retinylidene proteins, but are usually still called opsins regardless. Most pro ...
s that are sensitive to different parts of the
visible range The visible spectrum is the band of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called '' visible light'' (or simply light). The optical spectrum is sometimes conside ...
. The signals from these cones recombine in the precortical visual
opponent process The opponent process is a color theory that states that the human visual system interprets information about color by processing signals from photoreceptor cells in an antagonistic manner. The opponent-process theory suggests that there are thre ...
to form a
luminance Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls wit ...
channel and two chromatic channels (red-green and blue-yellow) that comprise an individual's
trichromatic Trichromacy or trichromatism is the possession of three independent channels for conveying color information, derived from the three different types of cone cells in the eye. Organisms with trichromacy are called trichromats. The normal expl ...
color gamut In color reproduction and colorimetry, a gamut, or color gamut , is a convex set containing the colors that can be accurately represented, i.e. reproduced by an output device (e.g. printer or display) or measured by an input device (e.g. ...
. The number of colors an infant can see is proportional to the size of their gamut, which is proportional to the
dynamic range Dynamics (from Greek δυναμικός ''dynamikos'' "powerful", from δύναμις ''dynamis'' " power") or dynamic may refer to: Physics and engineering * Dynamics (mechanics), the study of forces and their effect on motion Brands and ent ...
of each of the three channels. These dynamic ranges increase with age, leading to the development of color vision. It is generally accepted across all current research that infants prefer high contrast and bold colors at their earlier stages of infancy, rather than saturated colors. One study found that newborn infants looked longer at checkered patterns of white and colored stimuli (including red, green, yellow) than they did at a uniform white color. However, infants failed to discriminate blue from white checkered patterns. Another study – recording the fixation time of infants to blue, green, yellow, red, and gray at two difference luminance levels – found that infants and adults differed in their color preference. Newborns and one-month-old infants did not show any preference among the colored stimuli, while three-month-old infants preferred the longer wavelength (red and yellow) stimuli to the short-wavelength (blue and green) stimuli, and adults had the opposite. However, both adults and infants preferred colored stimuli over non-colored stimuli. This study suggested that infants had a general preference for colored stimuli over non-colored stimuli at birth, though infants were not able to distinguish the different colored stimuli prior to the age of three months. Research into the development of color vision using infant female
Japanese macaques The Japanese macaque (''Macaca fuscata''), also known as the snow monkey, is a terrestrial Old World monkey species that is native to Japan. Colloquially, they are referred to as "snow monkeys" because some live in areas where snow covers the g ...
indicates that color experience is critical for normal vision development. Infant monkeys were placed in a room with
monochromatic A monochrome or monochromatic image, object or palette is composed of one color (or values of one color). Images using only shades of grey are called grayscale (typically digital) or black-and-white (typically analog). In physics, mon ...
lighting limiting their access to a normal spectrum of colors for a one-month period. After a one-year period, the monkey's ability to distinguish colors was poorer than that of normal monkey exposed to a full spectrum of colors. Although this result directly pertains to infant monkeys and not humans, they strongly suggest that visual experience with color is critical for proper, healthy vision development in humans as well.


Light sensitivity

The threshold for light sensitivity is much higher in infants compared to adults. From birth, the
pupils The pupil is a hole located in the center of the iris of the eye that allows light to strike the retina.Cassin, B. and Solomon, S. (1990) ''Dictionary of Eye Terminology''. Gainesville, Florida: Triad Publishing Company. It appears black becau ...
of an infant remain constricted to limit the amount of entering light. In regards to pupil dimensions, newborns' pupils grow from approximately 2.2 mm to an adult length of 3.3 mm. A one-month-old infant can detect a light threshold only when it is approximately 50 times greater than that of an adult. By two months, the threshold decreases measurably to about ten times greater than that of an adult. The increase in sensitivity is the result of lengthening of the photoreceptors and further development of the retina. Therefore, postnatal maturation of the retinal structures has led to strong light adaptations for infants.


Vision abnormalities in infants

Vision problems in infants are both common and easily treatable if addressed early by an ophthalmologist.


Critical warning signs

* Excessive tearing * Red or encrusted eyelids * White pupils * Extreme sensitivity to bright light * Constant eye turning


Vision problems

*
Strabismus Strabismus is an eye disorder in which the eyes do not properly align with each other when looking at an object. The eye that is pointed at an object can alternate. The condition may be present occasionally or constantly. If present during a ...
*
Nystagmus Nystagmus is a condition of involuntary (or voluntary, in some cases) Eye movement (sensory), eye movement. People can be born with it but more commonly acquire it in infancy or later in life. In many cases it may result in visual impairment, re ...
*
Amblyopia Amblyopia, also called lazy eye, is a disorder of sight in which the brain fails to fully process input from one eye and over time favors the other eye. It results in decreased vision in an eye that typically appears normal in other aspects. Amb ...
*
Photophobia Photophobia is a medical symptom of abnormal intolerance to visual perception of light. As a medical symptom, photophobia is not a morbid fear or phobia, but an experience of discomfort or pain to the eyes due to light exposure or by presence o ...
* Tumor in the eye *
Cataract A cataract is a cloudy area in the lens (anatomy), lens of the eye that leads to a visual impairment, decrease in vision of the eye. Cataracts often develop slowly and can affect one or both eyes. Symptoms may include faded colours, blurry or ...


See also

*
Eye exam An eye examination, commonly known as an eye test, is a series of tests performed to assess Visual acuity, vision and ability to Focus (optics), focus on and discern objects. It also includes other tests and examinations of the human eye, eyes. ...
*
Orthoptist Orthoptics is a profession allied to the eye care profession. Orthoptists are the experts in diagnosing and treating defects in eye movements and problems with how the eyes work together, called binocular vision. These can be caused by issues with ...
*
Pediatric ophthalmology Pediatric ophthalmology is a sub-specialty of ophthalmology concerned with eye diseases, visual development, and vision care in children. Training In the United States, pediatric ophthalmologists are physicians who have completed medical school, ...
*
Retinopathy of prematurity Retinopathy of prematurity (ROP), also called retrolental fibroplasia (RLF) and Terry syndrome, is a disease of the eye affecting prematurely born babies generally having received neonatal intensive care, in which oxygen therapy is used beca ...


References


External links


Boston Children's HospitalUniversity of Massachusetts Medical CenterInfant Vision: Birth to 24 Months of Age
American Optomeric Association {{Infants and their care Ophthalmology