HOME

TheInfoList



OR:

In mathematics, an indicator function or a characteristic function of a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\in A, and \mathbf_(x)=0 otherwise, where \mathbf_A is a common notation for the indicator function. Other common notations are I_A, and \chi_A. The indicator function of is the
Iverson bracket In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement . It maps any statement to a function of the free variables in that statement ...
of the property of belonging to ; that is, :\mathbf_(x)= \in A For example, the Dirichlet function is the indicator function of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s as a subset of the
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s.


Definition

The indicator function of a subset of a set is a function \mathbf_A \colon X \to \ defined as \mathbf_A(x) := \begin 1 ~&\text~ x \in A~, \\ 0 ~&\text~ x \notin A~. \end The
Iverson bracket In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement . It maps any statement to a function of the free variables in that statement ...
provides the equivalent notation, \in A/math> or to be used instead of \mathbf_(x)\,. The function \mathbf_A is sometimes denoted , , , or even just .


Notation and terminology

The notation \chi_A is also used to denote the
characteristic function In mathematics, the term "characteristic function" can refer to any of several distinct concepts: * The indicator function of a subset, that is the function ::\mathbf_A\colon X \to \, :which for a given subset ''A'' of ''X'', has value 1 at point ...
in
convex analysis Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory. Convex sets A subset C \subseteq X of ...
, which is defined as if using the reciprocal of the standard definition of the indicator function. A related concept in statistics is that of a dummy variable. (This must not be confused with "dummy variables" as that term is usually used in mathematics, also called a
bound variable In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is n ...
.) The term "
characteristic function In mathematics, the term "characteristic function" can refer to any of several distinct concepts: * The indicator function of a subset, that is the function ::\mathbf_A\colon X \to \, :which for a given subset ''A'' of ''X'', has value 1 at point ...
" has an unrelated meaning in classic probability theory. For this reason, traditional probabilists use the term indicator function for the function defined here almost exclusively, while mathematicians in other fields are more likely to use the term ''characteristic function'' to describe the function that indicates membership in a set. In
fuzzy logic Fuzzy logic is a form of many-valued logic in which the truth value of variables may be any real number between 0 and 1. It is employed to handle the concept of partial truth, where the truth value may range between completely true and complet ...
and modern many-valued logic, predicates are the characteristic functions of a
probability distribution In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomeno ...
. That is, the strict true/false valuation of the predicate is replaced by a quantity interpreted as the degree of truth.


Basic properties

The ''indicator'' or ''characteristic'' function of a subset of some set maps elements of to the range \. This mapping is surjective only when is a non-empty
proper subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of . If A \equiv X, then \mathbf_A=1. By a similar argument, if A\equiv\emptyset then \mathbf_A=0. In the following, the dot represents multiplication, 1\cdot1 = 1, 1\cdot0 = 0, etc. "+" and "−" represent addition and subtraction. "\cap " and "\cup " are intersection and union, respectively. If A and B are two subsets of X, then \begin \mathbf_ = \min\ = \mathbf_A \cdot\mathbf_B, \\ \mathbf_ = \max\ = \mathbf_A + \mathbf_B - \mathbf_A \cdot\mathbf_B, \end and the indicator function of the
complement A complement is something that completes something else. Complement may refer specifically to: The arts * Complement (music), an interval that, when added to another, spans an octave ** Aggregate complementation, the separation of pitch-clas ...
of A i.e. A^C is: \mathbf_ = 1-\mathbf_A. More generally, suppose A_1, \dotsc, A_n is a collection of subsets of . For any x \in X: \prod_ ( 1 - \mathbf_(x)) is clearly a product of s and s. This product has the value 1 at precisely those x \in X that belong to none of the sets A_k and is 0 otherwise. That is \prod_ ( 1 - \mathbf_) = \mathbf_ = 1 - \mathbf_. Expanding the product on the left hand side, \mathbf_= 1 - \sum_ (-1)^ \mathbf_ = \sum_ (-1)^ \mathbf_ where , F, is the
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
of . This is one form of the principle of inclusion-exclusion. As suggested by the previous example, the indicator function is a useful notational device in
combinatorics Combinatorics is an area of mathematics primarily concerned with counting, both as a means and an end in obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many a ...
. The notation is used in other places as well, for instance in
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
: if is a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
with probability measure \operatorname and is a
measurable set In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simi ...
, then \mathbf_A becomes a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the p ...
whose
expected value In probability theory, the expected value (also called expectation, expectancy, mathematical expectation, mean, average, or first moment) is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of a ...
is equal to the probability of : \operatorname(\mathbf_A)= \int_ \mathbf_A(x)\,d\operatorname = \int_ d\operatorname = \operatorname(A). This identity is used in a simple proof of
Markov's inequality In probability theory, Markov's inequality gives an upper bound for the probability that a non-negative function of a random variable is greater than or equal to some positive constant. It is named after the Russian mathematician Andrey Marko ...
. In many cases, such as
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intr ...
, the inverse of the indicator function may be defined. This is commonly called the
generalized Möbius function In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural constructi ...
, as a generalization of the inverse of the indicator function in elementary
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Math ...
, the
Möbius function The Möbius function is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated ''Moebius'') in 1832. It is ubiquitous in elementary and analytic number theory and most of ...
. (See paragraph below about the use of the inverse in classical recursion theory.)


Mean, variance and covariance

Given a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
\textstyle (\Omega, \mathcal F, \operatorname) with A \in \mathcal F, the indicator random variable \mathbf_A \colon \Omega \rightarrow \mathbb is defined by \mathbf_A (\omega) = 1 if \omega \in A, otherwise \mathbf_A (\omega) = 0. ;
Mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value ( magnitude and sign) of a given data set. For a data set, the '' ari ...
: \operatorname(\mathbf_A (\omega)) = \operatorname(A) (also called "Fundamental Bridge"). ;
Variance In probability theory and statistics, variance is the expectation of the squared deviation of a random variable from its population mean or sample mean. Variance is a measure of dispersion, meaning it is a measure of how far a set of number ...
: \operatorname(\mathbf_A (\omega)) = \operatorname(A)(1 - \operatorname(A)) ;
Covariance In probability theory and statistics, covariance is a measure of the joint variability of two random variables. If the greater values of one variable mainly correspond with the greater values of the other variable, and the same holds for the le ...
: \operatorname(\mathbf_A (\omega), \mathbf_B (\omega)) = \operatorname(A \cap B) - \operatorname(A)\operatorname(B)


Characteristic function in recursion theory, Gödel's and Kleene's representing function

Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imm ...
described the ''representing function'' in his 1934 paper "On undecidable propositions of formal mathematical systems" (the "¬" indicates logical inversion, i.e. "NOT"):
Kleene Stephen Cole Kleene ( ; January 5, 1909 – January 25, 1994) was an American mathematician. One of the students of Alonzo Church, Kleene, along with Rózsa Péter, Alan Turing, Emil Post, and others, is best known as a founder of the branch o ...
offers up the same definition in the context of the
primitive recursive function In computability theory, a primitive recursive function is roughly speaking a function that can be computed by a computer program whose loops are all "for" loops (that is, an upper bound of the number of iterations of every loop can be determined ...
s as a function of a predicate takes on values if the predicate is true and if the predicate is false. For example, because the product of characteristic functions \phi_1 * \phi_2 * \cdots * \phi_n = 0 whenever any one of the functions equals , it plays the role of logical OR: IF \phi_1 = 0 OR \phi_2 = 0 OR ... OR \phi_n = 0 THEN their product is . What appears to the modern reader as the representing function's logical inversion, i.e. the representing function is when the function is "true" or satisfied", plays a useful role in Kleene's definition of the logical functions OR, AND, and IMPLY, the bounded- and unbounded- mu operators and the CASE function.


Characteristic function in fuzzy set theory

In classical mathematics, characteristic functions of sets only take values (members) or (non-members). In ''
fuzzy set theory In mathematics, fuzzy sets (a.k.a. uncertain sets) are sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh in 1965 as an extension of the classical notion of set. At the same time, defined a ...
'', characteristic functions are generalized to take value in the real unit interval , or more generally, in some
algebra Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
or structure (usually required to be at least a
poset In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary r ...
or lattice). Such generalized characteristic functions are more usually called
membership function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\ ...
s, and the corresponding "sets" are called ''fuzzy'' sets. Fuzzy sets model the gradual change in the membership
degree Degree may refer to: As a unit of measurement * Degree (angle), a unit of angle measurement ** Degree of geographical latitude ** Degree of geographical longitude * Degree symbol (°), a notation used in science, engineering, and mathemati ...
seen in many real-world predicates like "tall", "warm", etc.


Derivatives of the indicator function

A particular indicator function is the
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argume ...
H(x) := \mathbf_ The distributional derivative of the Heaviside step function is equal to the Dirac delta function, i.e. \frac=\delta(x) and similarly the distributional derivative of G(x) := \mathbf_ is \frac=-\delta(x) Thus the derivative of the Heaviside step function can be seen as the ''inward normal derivative'' at the ''boundary'' of the domain given by the positive half-line. In higher dimensions, the derivative naturally generalises to the inward normal derivative, while the Heaviside step function naturally generalises to the indicator function of some domain . The surface of will be denoted by . Proceeding, it can be derived that the inward normal derivative of the indicator gives rise to a 'surface delta function', which can be indicated by \delta_S(\mathbf): \delta_S(\mathbf) = -\mathbf_x \cdot \nabla_x\mathbf_ where is the outward normal of the surface . This 'surface delta function' has the following property: -\int_f(\mathbf)\,\mathbf_x\cdot\nabla_x\mathbf_\;d^\mathbf = \oint_\,f(\mathbf)\;d^\mathbf. By setting the function equal to one, it follows that the inward normal derivative of the indicator integrates to the numerical value of the
surface area The surface area of a solid object is a measure of the total area that the surface of the object occupies. The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of ...
.


See also

*
Dirac measure In mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element ''x'' or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields ...
* Laplacian of the indicator * Dirac delta * Extension (predicate logic) *
Free variables and bound variables In mathematics, and in other disciplines involving formal languages, including mathematical logic and computer science, a free variable is a notation (symbol) that specifies places in an expression where substitution may take place and is ...
*
Heaviside step function The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argume ...
*
Iverson bracket In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement . It maps any statement to a function of the free variables in that statement ...
*
Kronecker delta In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: \delta_ = \begin 0 &\text i \neq j, \\ 1 ...
, a function that can be viewed as an indicator for the identity relation * Macaulay brackets *
Multiset In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that ...
*
Membership function In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , one has \mathbf_(x)=1 if x\ ...
* Simple function *
Dummy variable (statistics) In regression analysis, a dummy variable (also known as indicator variable or just dummy) is one that takes the values 0 or 1 to indicate the absence or presence of some categorical effect that may be expected to shift the outcome. For example, i ...
* Statistical classification * Zero-one loss function


Notes


References


Sources

* * * * * * * {{refend Measure theory Integral calculus Real analysis Mathematical logic Basic concepts in set theory Probability theory Types of functions