InGaN Crystal SEM CL
   HOME

TheInfoList



OR:

Indium gallium nitride (InGaN, ) is a
semiconductor material A semiconductor is a material with electrical conductivity between that of a Electrical conductor, conductor and an Insulator (electricity), insulator. Its conductivity can be modified by adding impurities ("doping (semiconductor), doping") to ...
made of a mix of
gallium nitride Gallium nitride () is a binary III/ V direct bandgap semiconductor commonly used in blue light-emitting diodes since the 1990s. The compound is a very hard material that has a Wurtzite crystal structure. Its wide band gap of 3.4  eV af ...
(GaN) and
indium nitride Indium nitride () is a narrow gap, small-bandgap semiconductor material, which has potential application in solar cells and high speed electronics. The bandgap of InN has now been established as ~0.7 eV depending on temperature (the obsolete ...
(InN). It is a ternary group III/ group V direct bandgap
semiconductor A semiconductor is a material with electrical conductivity between that of a conductor and an insulator. Its conductivity can be modified by adding impurities (" doping") to its crystal structure. When two regions with different doping level ...
. Its
bandgap In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the ...
can be tuned by varying the amount of indium in the alloy. InxGa1−xN has a direct bandgap span from the infrared (0.69 eV) for InN to the ultraviolet (3.4 eV) of GaN. The ratio of In/Ga is usually between 0.02/0.98 and 0.3/0.7.


Applications


LEDs

Indium gallium nitride is the light-emitting layer in modern blue and green
LED A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corresp ...
s and often grown on a
GaN The word Gan or the initials GAN may refer to: Places * Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated '' ...
buffer on a transparent substrate as, e.g.
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
or
silicon carbide Silicon carbide (SiC), also known as carborundum (), is a hard chemical compound containing silicon and carbon. A wide bandgap semiconductor, it occurs in nature as the extremely rare mineral moissanite, but has been mass-produced as a powder a ...
. It has a high
heat capacity Heat capacity or thermal capacity is a physical property of matter, defined as the amount of heat to be supplied to an object to produce a unit change in its temperature. The SI unit of heat capacity is joule per kelvin (J/K). Heat capacity is a ...
and its sensitivity to
ionizing radiation Ionizing (ionising) radiation, including Radioactive decay, nuclear radiation, consists of subatomic particles or electromagnetic waves that have enough energy per individual photon or particle to ionization, ionize atoms or molecules by detaching ...
is low (like other group III
nitride In chemistry, a nitride is a chemical compound of nitrogen. Nitrides can be inorganic or organic, ionic or covalent. The nitride anion, N3−, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitr ...
s), making it also a potentially suitable material for
solar photovoltaic A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to abs ...
devices, specifically for arrays for
satellite A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation ( GPS), broadcasting, scient ...
s. It is theoretically predicted that
spinodal decomposition Spinodal decomposition is a mechanism by which a single thermodynamic Phase (matter), phase spontaneously separates into two phases (without nucleation). Decomposition occurs when there is no Thermodynamics, thermodynamic barrier to phase separatio ...
of indium nitride should occur for compositions between 15% and 85%, leading to In-rich and Ga-rich InGaN regions or clusters. However, only a weak phase
segregation Segregation may refer to: Separation of people * Geographical segregation, rates of two or more populations which are not homogenous throughout a defined space * School segregation * Housing segregation * Racial segregation, separation of human ...
has been observed in experimental local structure studies. Other experimental results using cathodoluminescence and
photoluminescence Photoluminescence (abbreviated as PL) is light emission from any form of matter after the absorption of photons (electromagnetic radiation). It is one of many forms of luminescence (light emission) and is initiated by photoexcitation (i.e. phot ...
excitation on low In-content InGaN multi-
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occup ...
s have demonstrated that providing correct material parameters of the InGaN/GaN alloys, theoretical approaches for AlGaN/GaN systems also apply to InGaN nanostructures. GaN is a defect-rich material with typical dislocation densities exceeding 108 cm−2.
Light emission This is a list of sources of light, the visible part of the electromagnetic spectrum. Light sources produce photons from another energy source, such as heat, chemical reactions, or conversion of mass or a different frequency of electromagnetic ener ...
from InGaN layers grown on such GaN buffers used in blue and green LEDs is expected to be attenuated because of non-radiative recombination at such defects. Nevertheless, InGaN
quantum well A quantum well is a potential well with only discrete energy values. The classic model used to demonstrate a quantum well is to confine particles, which were initially free to move in three dimensions, to two dimensions, by forcing them to occup ...
s, are efficient light emitters in green, blue, white and
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (corre ...
s and
diode laser The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD or semiconductor laser or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode p ...
s. The indium-rich regions have a lower bandgap than the surrounding material and create regions of reduced potential energy for charge carriers. Electron-hole pairs are trapped there and recombine with emission of light, instead of diffusing to crystal defects where the recombination is non-radiative. Also, self-consistent computer simulations have shown that radiative recombination is focused where regions are rich of indium. The emitted wavelength, dependent on the material's band gap, can be controlled by the GaN/InN ratio, from near ultraviolet for 0.02In/0.98Ga through 390 nm for 0.1In/0.9Ga, violet-blue 420 nm for 0.2In/0.8Ga, to blue 440 nm for 0.3In/0.7Ga, to red for higher ratios and also by the thickness of the InGaN layers which are typically in the range of 2–3 nm. However, atomistic simulations results have shown that emission energies have a minor dependence on small variations of device dimensions. Studies based on device simulation have shown that it could be possible to increase InGaN/GaN LED efficiency using band gap engineering, especially for green LEDs.


Photovoltaics

The ability to perform bandgap engineering with InGaN over a range that provides a good spectral match to sunlight, makes InGaN suitable for
solar photovoltaic cell A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to abso ...
s. It is possible to grow multiple layers with different bandgaps, as the material is relatively insensitive to defects introduced by a lattice mismatch between the layers. A two-layer multijunction cell with bandgaps of 1.1 eV and 1.7 eV can attain a theoretical 50% maximum efficiency, and by depositing multiple layers tuned to a wide range of bandgaps an efficiency up to 70% is theoretically expected. Significant photoresponse was obtained from experimental InGaN single-junction devices. In addition to controlling the optical properties, which results in band gap engineering, photovoltaic device performance can be improved by engineering the microstructure of the material to increase the optical path length and provide light trapping. Growing nanocolumns on the device can further result in resonant interaction with light, and InGaN nanocolumns have been successfully deposited on using plasma enhanced evaporation. Nanorod growth may also be advantageous in the reduction of treading dislocations which may act as charge traps reducing solar cell efficiency Metal-modulated
epitaxy Epitaxy (prefix ''epi-'' means "on top of”) is a type of crystal growth or material deposition in which new crystalline layers are formed with one or more well-defined orientations with respect to the crystalline seed layer. The deposited cry ...
allows controlled atomic layer-by-layer growth of thin films with almost ideal characteristics enabled by strain relaxation at the first atomic layer. The crystal's lattice structures match up, resembling a perfect crystal, with corresponding luminosity. The crystal had indium content ranging from x ~ 0.22 to 0.67. Significant improvement in the crystalline quality and optical properties began at x ~ 0.6. Films were grown at ~400 °C to facilitate indium incorporation and with precursor modulation to enhance surface morphology and metal adlayer diffusion. These findings should contribute to the development of growth techniques for nitride semiconductors under high lattice misfit conditions.


Quantum heterostructures

Quantum heterostructures are often built from
GaN The word Gan or the initials GAN may refer to: Places * Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated '' ...
with InGaN active layers. InGaN can be combined with other materials, e.g.
GaN The word Gan or the initials GAN may refer to: Places * Gan, a component of Hebrew placenames literally meaning "garden" China * Gan River (Jiangxi) * Gan River (Inner Mongolia), * Gan County, in Jiangxi province * Gansu, abbreviated '' ...
,
AlGaN Aluminium gallium nitride (AlGaN) is a semiconductor material. It is any alloy of aluminium nitride and gallium nitride. The bandgap of AlxGa1−xN can be tailored from 4.3eV (xAl=0) to 6.2eV (xAl=1). AlGaN is used to manufacture light-emitting di ...
, on
SiC The Latin adverb ''sic'' (; ''thus'', ''so'', and ''in this manner'') inserted after a quotation indicates that the quoted matter has been transcribed or translated as found in the source text, including erroneous, archaic, or unusual spelling ...
,
sapphire Sapphire is a precious gemstone, a variety of the mineral corundum, consisting of aluminium oxide () with trace amounts of elements such as iron, titanium, cobalt, lead, chromium, vanadium, magnesium, boron, and silicon. The name ''sapphire ...
and even
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
.


Nanorods

InGaN nanorod LEDs are three-dimensional structures with a larger emitting surface, better efficiency and greater light emission compared to planar LEDs .


Safety and toxicity

The toxicology of InGaN has not been fully investigated. The dust is an irritant to skin, eyes and lungs. The environment, health and safety aspects of indium gallium nitride sources (such as
trimethylindium Trimethylindium, often abbreviated to TMI or TMIn, is the organoindium compound with the formula In(CH3)3. It is a colorless, pyrophoric solid. Unlike trimethylaluminium, but akin to trimethylgallium, TMI is monomeric. Preparation TMI is prepare ...
,
trimethylgallium Trimethylgallium, often abbreviated to TMG or TMGa, is the organogallium compound with the formula Ga(CH3)3. It is a colorless, pyrophoric liquid. Unlike trimethylaluminium, TMG adopts a monomeric structure. When examined in detail, the monome ...
and
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
) and industrial hygiene monitoring studies of standard
MOVPE Metalorganic vapour-phase epitaxy (MOVPE), also known as organometallic vapour-phase epitaxy (OMVPE) or metalorganic chemical vapour deposition (MOCVD), is a chemical vapour deposition method used to produce single- or polycrystalline thin films. ...
sources have been reported recently in a review.


See also

*
Indium gallium phosphide Indium gallium phosphide (InGaP), also called gallium indium phosphide (GaInP), is a semiconductor composed of indium, gallium and phosphorus. It is used in high-power and high-frequency electronics because of its superior electron velocity with ...
*
Indium gallium arsenide Indium gallium arsenide (InGaAs) (alternatively gallium indium arsenide, GaInAs) is a ternary alloy (chemical compound) of indium arsenide (InAs) and gallium arsenide (GaAs). Indium and gallium are Group 13 element, group III elements of the peri ...


References

{{Nitrides Indium compounds Gallium compounds Nitrides III-V semiconductors III-V compounds Light-emitting diode materials