Background
Decompression sickness (DCS) is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent fromRisks
Any potential benefits of using IWR for earlier recompression should be balanced against the risks. These risks are well known, and their potential mitigations are fairly well understood. The Royal Australian Navy School of Underwater Medicine was charged to supervise the then non-sanctioned practice of IWR, in response to the very long delays that often occurred between the presentation of DCS and recompression treatment. The issues identified include: * Inappropriate cases for treatment, * Oxygen toxicity, * Emergency termination of treatment, * Hypothermia * Adequacy of equipment in remote areas, * Seasickness, * Operator expertise and training, * Safety of the diving attendant and the boat tenders, * Requirement for medical supervision, * Transport availability, * Misuse of equipment, * Pulmonary barotrauma cases.Risk management
In 2018, a group of diving medical experts issued a consensus guideline on pre-hospital decompression sickness management and concluded that IWR is only appropriate in groups that have been trained and are competent in the skills required for IWR and have appropriate equipment. Mitigation of a CNS oxygen toxicity seizure focuses on protecting the airway to prevent drowning. A full-face mask or mouthpiece retaining strap is reasonably effective though not guaranteed. Tethering the diver to prevent sinking, and providing a safety diver to accompany the diver under treatment at all times, who can recover the diver to the surface immediately in the event of a seizure are also recommended, following the recommended procedures for recovery of a convulsing diver.Factors influencing a decision to use IWR
Recompression and hyperbaric oxygen administered in a recompression chamber are recognised as the definitive treatment for DCI, but when there is no readily available access to a suitable hyperbaric chamber, and if symptoms are significant or progressing, in-water recompression with oxygen is an option where a group of divers, including the symptomatic diver, already have the necessary equipment and relevant training and knowledge that provides a sufficient understanding of the associated risks to allow the involved parties to collectively accept responsibility for a decision to proceed with IWR. The decision of whether or not to attempt IWR depends on identifying the diver whose condition is serious enough to justify the risk, but whose clinical condition does not indicate that the risk is unacceptable. The risk may not be justified for mild DCI, if spontaneous recovery is probable whether the diver is recompressed or not, and surface oxygen is indicated for these cases. However, in these cases the risk of the recompression is also low, and early abandonment is also unlikely to cause further harm. There are no firm guidelines regarding expected delay to access of a decompression chamber, but divers generally consider a predicted delay of more than 8 hours from symptom onset to be reason to consider in-water recompression.Environmental conditions
Water conditions, such as low temperature and rough sea state are relative contraindications, and the team must take these factors into account. Divers undergoing IWR risk becoming cold or hypothermic. They may already have done long dives in cold water, but the use of dry suits is common for such conditions, and the use of active heating systems in dry suit undergarments may be available. IWR requires a stable platform that can remain in one place for three hours. These factors should be considered when deciding whether to undertake IWR. Deteriorating condition of the diver or environmental conditions may make it necessary to abort or shorten treatment, or terminate it before full resolution. There is no known reason to assume that this would be inherently worse than not providing what treatment is possible at reasonable risk.Indications
Indications are based on symptoms and signs of decompression illness where expected benefits are likely to outweigh risk. There is a tension between conditions serious enough to justify the risks and clinical states which indicate excessive risk. Risk may not be considered justified for cases where the symptoms suggest a spontaneous recovery is likely without recompression, although the actual risk in these cases is likely to be relatively low. As of 2018 there is no widely accepted method for objectively selecting divers suitable for in-water recompression, and although remote consultation with a diving medical practitioner is advised by the Doolette and Mitchell 2018 protocol, it is likely that remote advice will vary significantly depending on who is contacted and how willing they are to accept responsibility for giving advice on a procedure with which they may have little personal experience and for which there is no clear decision tree. An attempt has been made to provide some structure to the decision process which can be useful to divers without medical training, by the technical diving certification organisation International Association of Nitrox and Technical Divers (IANTD), which in consultation with diving medical experts, produced a decision map for field use. The system relies entirely on gross observation, omitting a detailed neurological examination. It categorises symptoms into three "tiers", which correspond roughly with perceived severity of DCI, and appropriateness of IWR in suitable conditions. Tier 1 symptoms would not be severe enough to justify IWR, but would be monitored and discussed with a remote consultant. These are generally non-specific symptoms which may or may not be of DCI, and are not an immediate or significant threat, such as headache, lethargy, or nausea. Tier 2 symptoms are severe enough to suggest IWR if they present soon after surfacing, or are progressive, but not necessarily if there is a delay of some hours and the symptoms are not progressive. IWR would be justified for tier 2 when it may prevent the development of more severe symptoms. These symptoms are likely to be of DCI, but are not likely to result in permanent injury or death if not treated. They include musculoskeletal pain, excepting symmetrical ''girdle pains'', lymphatic obstruction with subcutaneous swelling, skin rashes and paraesthesias such as tingling. Tier 3: symptoms are severe enough to justify IWR if there are no contraindications and the logistical requirements are in place. These symptoms and signs are likely to be of DCI and indicate a risk of permanent injury or death. Some of them are also contraindications to IWR. They include changes in state of consciousness, or obvious confusion, difficulty with speech, visual changes, disturbances in balance, obvious sensory loss (numbness), obvious weakness or paralysis, bladder dysfunction, (usually inability to urinate), bowel dysfunction, loss of limb coordination, shortness of breath, and bilaterally symmetrical girdle pains.Contraindications
Symptoms of mild DCS have been described as being one or more of musculoskeletal pain, rash, subjective sensory change in a non-dermatomal distribution, and constitutional symptoms such as fatigue. Divers with only these symptoms could be adequately managed with surface oxygen, observation, and consultation with a diving physician. Exposing divers with stable mild symptoms to the risks of IWR might not be justified. In severe cases the diver may be so compromised that they could not safely endure the procedure. It may be difficult or impossible to reliably codify the decision process. Some signs of decompression illness which suggest a risk of permanent injury are nevertheless considered contraindications for IWR. Hearing loss and vertigo displayed in isolation with no other symptoms of DCI can have been caused by inner ear barotrauma rather than DCI, and inner ear barotrauma is generally considered a contraindication for recompression. Even when caused by DCI, vertigo can make in-water treatment hazardous if accompanied by nausea and vomiting. A diver with a deteriorating level of consciousness or with a persisting reduced level of consciousness should also not be recompressed in-water nor should a diver who does not want to go back down, or with a history of oxygen toxicity in the preceding dives, altered level of consciousness, shock, respiratory distress, or any physical injury or incapacitation which may make the procedure unsafe. Suspected or confirmed cases ofProtocol
Recompression with hyperbaric oxygen administered in a recompression chamber is recognised as the standard of care for decompression sickness, but the infrastructure is expensive and may not be used very often, so many locations do not have convenient access to a suitable facility. If symptoms are significant or deteriorating, in-water recompression using oxygen is an option where groups of divers, including the symptomatic diver, have relevant prior training that allows an understanding of the associated risks and a collective informed acceptance of responsibility for the decision to proceed with treatment. Observational evidence has shown that very early recompression on oxygen usually results in good outcomes, or at least better outcomes than treatment after longer delays. Recompression on air will initially produce a compression of existing bubbles, and may produce associated clinical improvement, but bubbles will dissolve more slowly due to the lower concentration gradient, and some tissues will absorb more nitrogen. Bubbles nor completely resolved will re-expand during decompression, and may take up more gas, which may cause symptoms to recur or get worse. There is also observational evidence that IWR on air is less effective, so only oxygen is recommended as a treatment gas. The minimum team would comprise the symptomatic diver, a dive buddy to accompany the diver during the recompression, and a surface supervisor, who must all be competent at decompression procedures using 100% oxygen as the breathing gas. The team should be suitably equipped with adequate thermal protection, an adequate oxygen supply, a means of delivering oxygen at or near 100% for the duration of both underwater and surface phases of the treatment, a means of voice or written communication, and a method of keeping the diver at the appropriate depth and maintaining position. A full-face mask or mouthpiece retaining strap is strongly recommended as there is observational evidence of these devices preventing drowning of an unconscious diver underwater. Surface supplied oxygen delivered to the casualty by umbilical or airline, and voice communication are desirable options as they allow the surface team members to keep control of the breathing gas supply and allow better monitoring of the diver's condition. Positive pressure masks have been recommended for use with open circuit oxygen, as giving more secure protection of the airway, after their successful use in rescuing the trapped Tham Luang cave group while anaesthetised. Although the IWR tables are shorter and shallower than most hyperbaric treatment tables, a substantial supply of oxygen is required. The US Navy Type 1 IWR table requires about of oxygen for a diver with a surface consumption rate of per minute, and the Type 2 table would use about . The rate of per minute may be optimistic if the diver is stressed due to injury, discomfort, or cold, or if some models of full-face mask are used. Recognised IWR protocols include the "Clipperton protocol", "Australian method", and the US Navy method for in-water recompression on oxygen. In-water recompression may not produce complete resolution of DCI, and signs or symptoms may recur. Any diver completing an in-water recompression should consult a diving medical practitioner as soon as reasonably practicable.In-water recompression tables
Six IWR treatment tables have been published in the scientific literature. Each of these methods have several commonalities including the use of a full face mask, a tender to supervise the diver during treatment, a weighted recompression line and a means of communication. The history of the three older methods for providing oxygen at 9 msw (30 fsw) was described in great detail by Pyle and Youngblood. The fourth method for providing oxygen at 7.5 msw (25 fsw) was described by Richard Pyle at the 48th Annual UHMS Workshop on In-water Recompression in 1999. The Clipperton method involves recompression to 9 msw (30 fsw) while the Clipperton(a) rebreather method involves initial recompression to 30 msw (98 fsw). The treatment tables recommended for use in chambers are not suitable for in-water recompression as the oxygen partial pressures and the associated risk of oxygen toxicity are too high.Australian in-water recompression table
The Australian IWR Tables were developed by theClipperton in-water recompression tables
The Clipperton and Clipperton(a) methods were developed for use on aHawaiian in-water recompression table
The Hawaiian IWR table was first described by Farm et al. while studying the diving habits of Hawaii's diving fishermen. The initial portion of the treatment involves descent on air to the depth of relief plus 30 fsw or a maximum of 165 fsw for ten minutes. Ascent from initial treatment depth to 30 fsw occurs over 10 minutes. The diver then completes the treatment breathing oxygen and is followed by oxygen breathing on the surface for 30 minutes post treatment. The Hawaiian IWR Table with Pyle modifications can be found in the proceedings of the DAN 2008 Technical Diving Conference.Pyle in-water recompression table
The Pyle IWR table was developed by Dr. Richard Pyle as a method for treating DCS in the field following scientific dives. This method begins with a 10-minute surface oxygen evaluation period. Compression to 25 fsw on oxygen for another 10-minute evaluation period. The table is best described by the treatmentUS Navy in-water recompression tables
TheIANTD in water recompression protocol
The International Association of Nitrox and Technical Divers (IANTD) has developed a specialized training program for technical divers to perform in-water therapeutic recompression. This procedure is designed for use in remote locations where hyperbaric chambers are not available. The program prepares divers to assess when conditions and equipment are appropriate, and when the diver's condition warrants such emergency treatment. The protocol primarily involves breathing oxygen at a depth of 25 feet of seawater (7.5 meters), with scheduled air breaks to reduce the risk of oxygen toxicity. This approach is intended to manage decompression sickness in extreme situations where conventional treatments are not accessible.Clinical significance
In-water recompression is a clinically significant method to manage a global shortage of chamber availability for recreational, technical and scientific divers who often dive in places many hours, or days, from the nearest chamber. Minimal delay of recompression is directly related to improved outcomes, and probably to reduced mortality. Divers with the appropriate equipment and training can treat decompression sickness on-site. Such treatment may prevent long-term disability, and can reduce costs and risk to rescue personnel. In-water recompression is a viable alternative when safe and rapid transfer to a suitable recompression chamber is not practicable."Informal" in-water recompression
Although in-water recompression is widely regarded as risky, and to be avoided, there is increasing evidence that technical divers who surface and demonstrate mild DCS symptoms may often get back into the water and breathe pure oxygen at a depth of for a period in an effort to alleviate the symptoms. Divers Alert Network's 2008 accident report mentions this trend, and that although the reported incidents showed very little success, " must recognize that these calls were mostly because the attempted IWR failed. In case the IWR were successful, hediver would not have called to report the event. Thus we do not know how often IWR may have been used successfully." Historically, the pearl divers of Broome, Western Australia, used decompression tables developed from personal experience, and would return to depth if symptoms of DCI developed on surfacing. These dives and recompression were done on air, using standard diving dress, which provides relatively good airway security. Success was variable, but some divers were treated in this way on several occasions.See also
* * * * *References
Further reading
* * * {{Underwater diving, divmed Underwater diving emergency procedures Decompression practice