HOME

TheInfoList



OR:

In
space exploration Space exploration is the process of utilizing astronomy and space technology to investigate outer space. While the exploration of space is currently carried out mainly by astronomers with telescopes, its physical exploration is conducted bo ...
, in situ resource utilization (ISRU) is the practice of collection, processing, storing and use of materials found or manufactured on other
astronomical object An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
s (the Moon, Mars, asteroids, etc.) that replace materials that would otherwise be brought from Earth. ISRU could provide materials for
life support Life support comprises the treatments and techniques performed in an emergency in order to support life after the failure of one or more vital organs. Healthcare providers and emergency medical technicians are generally certified to perform bas ...
,
propellant A propellant (or propellent) is a mass that is expelled or expanded in such a way as to create a thrust or another motive force in accordance with Newton's third law of motion, and "propel" a vehicle, projectile, or fluid payload. In vehicle ...
s,
construction material This is a list of building materials. Many types of building materials are used in the construction industry to create buildings and structures. These categories of materials and products are used by architects and construction project manager ...
s, and energy to a spacecraft payloads or space exploration crews. It is now very common for
spacecraft A spacecraft is a vehicle that is designed spaceflight, to fly and operate in outer space. Spacecraft are used for a variety of purposes, including Telecommunications, communications, Earth observation satellite, Earth observation, Weather s ...
and robotic planetary surface mission to harness the
solar radiation Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible light perceptible to the human eye as well as invisible infrared (typically p ...
found ''
in situ is a Latin phrase meaning 'in place' or 'on site', derived from ' ('in') and ' ( ablative of ''situs'', ). The term typically refers to the examination or occurrence of a process within its original context, without relocation. The term is use ...
'' in the form of
solar panels A solar panel is a device that converts sunlight into electricity by using photovoltaic (PV) cells. PV cells are made of materials that produce excited electrons when exposed to light. These electrons flow through a circuit and produce direct ...
. The use of ISRU for material production has not yet been implemented in a space mission, though several field tests in the late 2000s demonstrated various lunar ISRU techniques in a relevant environment. ISRU has long been considered as a possible avenue for reducing the mass and cost of space exploration architectures, in that it may be a way to drastically reduce the amount of payload that must be launched from Earth in order to explore a given
planetary body A planetary-mass object (PMO), planemo, or planetary body (sometimes referred to as a world) is, by geophysical definition of planet, geophysical definition of celestial objects, any celestial object massive enough to achieve hydrostatic equilib ...
. According to
NASA The National Aeronautics and Space Administration (NASA ) is an independent agencies of the United States government, independent agency of the federal government of the United States, US federal government responsible for the United States ...
, "in-situ resource utilization will enable the affordable establishment of extraterrestrial exploration and operations by minimizing the materials carried from Earth."


Uses


Water

In the context of ISRU, water is most often sought directly as fuel or as feedstock for fuel production. Applications include its use in life support, either directly for drinking, for growing food, producing oxygen, or numerous other industrial processes, all of which require a ready supply of water in the environment and the equipment to extract it. Such extraterrestrial water has been discovered in a variety of forms throughout the
Solar System The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
, and a number of potential water extraction technologies have been investigated. For water that is chemically bound to regolith, solid ice, or some manner of permafrost, sufficient heating can recover the water. However this is not as easy as it appears because ice and permafrost can often be harder than plain rock, necessitating laborious mining operations. Where there is some level of atmosphere, such as on Mars, water can be extracted directly from the air using a simple process such as WAVAR. Another possible source of water is deep aquifers kept warm by Mars's latent geological heat, which can be tapped to provide both water and geothermal power.


Rocket propellant

Rocket propellant production has been proposed from the Moon's surface by processing water ice detected at the poles. The likely difficulties include working at extremely low temperatures and extraction of water from the regolith. Most schemes electrolyse the water to produce
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
and
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
and
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th International Institute of Refrigeration's (IIR) International Congress of Refrigeration (held in Washington, DC in 1971) endorsed a univers ...
ally store them as liquids. This requires large amounts of equipment and power to achieve. Alternatively, it may be possible to heat water in a nuclear or solar thermal rocket, which may be able to deliver a large mass from the Moon to
low Earth orbit A low Earth orbit (LEO) is an geocentric orbit, orbit around Earth with a orbital period, period of 128 minutes or less (making at least 11.25 orbits per day) and an orbital eccentricity, eccentricity less than 0.25. Most of the artificial object ...
(LEO) in spite of the much lower
specific impulse Specific impulse (usually abbreviated ) is a measure of how efficiently a reaction mass engine, such as a rocket engine, rocket using propellant or a jet engine using fuel, generates thrust. In general, this is a ratio of the ''Impulse (physics), ...
, for a given amount of equipment. The
monopropellant Monopropellants are propellants consisting of chemicals that release energy through exothermic chemical decomposition. The molecular bond energy of the monopropellant is released usually through use of a catalyst. This can be contrasted with biprop ...
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscosity, viscous than Properties of water, water. It is used as an oxidizer, bleaching agent, and antiseptic, usua ...
(H2O2) can be made from water on
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
and the Moon.
Aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
as well as other metals has been proposed for use as rocket propellant made using lunar resources, and proposals include reacting the aluminum with water. For Mars, methane propellant can be manufactured via the Sabatier process.
SpaceX Space Exploration Technologies Corp., commonly referred to as SpaceX, is an America, American space technology company headquartered at the SpaceX Starbase, Starbase development site in Starbase, Texas. Since its founding in 2002, the compa ...
has suggested building a propellant plant on Mars that would use this process to produce methane ( ) and liquid oxygen (O2) from sub-surface water ice and atmospheric .


Solar cell production

It has long been suggested that
solar cell A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
s could be produced from the materials present in lunar soil. Silicon, aluminium, and glass, three of the primary materials required for solar cell production, are found in high concentrations in lunar soil and can be used to produce solar cells. In fact, the native vacuum on the lunar surface provides an excellent environment for direct vacuum deposition of thin-film materials for solar cells. Solar arrays produced on the lunar surface can be used to support lunar surface operations as well as satellites off the lunar surface. Solar arrays produced on the lunar surface may prove more cost effective than solar arrays produced and shipped from Earth, but this trade depends heavily on the location of the particular application in question. Another potential application of lunar-derived solar arrays is providing power to Earth. In its original form, known as the solar power satellite, the proposal was intended as an alternate power source for
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
. Solar cells would be launched into Earth orbit and assembled, with the resultant generated power being transmitted down to Earth via microwave beams. Despite much work on the cost of such a venture, the uncertainty lay in the cost and complexity of fabrication procedures on the lunar surface.


Building materials

The colonization of planets or moons will require obtaining local building materials, such as regolith. For example, studies employing artificial Mars soil mixed with
epoxy resin Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also co ...
and tetraethoxysilane, produce high enough values of strength, resistance, and flexibility parameters.
Asteroid mining Asteroid mining is the hypothetical extractivism, extraction of materials from asteroids and other minor planets, including near-Earth objects. Notable asteroid mining challenges include the high cost of spaceflight, unreliable identification ...
could also involve extraction of metals for construction material in space, which may be more cost-effective than bringing such material up out of
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's deep gravity well, or that of any other large body like the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
or
Mars Mars is the fourth planet from the Sun. It is also known as the "Red Planet", because of its orange-red appearance. Mars is a desert-like rocky planet with a tenuous carbon dioxide () atmosphere. At the average surface level the atmosph ...
. Metallic asteroids contain huge amounts of siderophilic metals, including
precious metal Precious metals are rare, naturally occurring metallic chemical elements of high Value (economics), economic value. Precious metals, particularly the noble metals, are more corrosion resistant and less reactivity (chemistry), chemically reac ...
s.


Locations


Mars

ISRU research for Mars is focused primarily on providing
rocket propellant Rocket propellant is used as reaction mass ejected from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical rocket, or from an external source, as with ion engines. Overvi ...
for a return trip to Earth—either for a crewed or a sample return mission—or for use as fuel on Mars. Many of the proposed techniques use the well-characterised
atmosphere of Mars The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and nob ...
as feedstock. Since this can be simulated on Earth, these proposals are relatively simple to implement, though it is by no means certain that NASA or the ESA will favour this approach over a more conventional direct mission. A typical proposal for ISRU is the use of a Sabatier reaction, , in order to produce methane on the Martian surface, to be used as a propellant. Oxygen is liberated from the water by
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
, and the hydrogen recycled back into the Sabatier reaction. The usefulness of this reaction is that—, when the availability of water on Mars was less scientifically demonstrated—only the hydrogen (which is light) was thought to need to be brought from Earth. ,
SpaceX Space Exploration Technologies Corp., commonly referred to as SpaceX, is an America, American space technology company headquartered at the SpaceX Starbase, Starbase development site in Starbase, Texas. Since its founding in 2002, the compa ...
has stated their goal of developing the technology for a Mars propellant plant that could use a variation on what is described in the previous paragraph. Rather than transporting hydrogen from Earth to use in making the methane and oxygen, they have said they plan to mine the requisite water from subsurface water ice, produce and then store the post-Sabatier reactants, and then use it as propellant for return flights of their
Starship A starship, starcraft, or interstellar spacecraft is a theoretical spacecraft designed for interstellar travel, traveling between planetary systems. The term is mostly found in science fiction. Reference to a "star-ship" appears as early as 1 ...
no earlier than 2023. As of 2023 SpaceX has not produced or published any designs, specifications for any ISRU technology. A similar reaction proposed for Mars is the reverse water gas shift reaction, . This reaction takes place rapidly in the presence of an iron-chrome
catalyst Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
at 400 °C, and has been implemented in an Earth-based
testbed A testbed (also spelled test bed) is a platform for conducting rigorous, transparent, and replicable testing of scientific theories, computing tools, and new technologies. The term is used across many disciplines to describe experimental research ...
by NASA. Again, hydrogen is recycled from the water by
electrolysis In chemistry and manufacturing, electrolysis is a technique that uses Direct current, direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of c ...
, and the reaction only needs a small amount of hydrogen from Earth. The net result of this reaction is the production of oxygen, to be used as the oxidizer component of rocket fuel. Another reaction proposed for the production of oxygen and fuel is the electrolysis of the atmospheric carbon dioxide, : \overset ->
text Text may refer to: Written word * Text (literary theory) In literary theory, a text is any object that can be "read", whether this object is a work of literature, a street sign, an arrangement of buildings on a city block, or styles of clothi ...
+ O2
It has also been proposed the ''in situ'' production of oxygen, hydrogen and CO from the Martian
hematite Hematite (), also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of . ...
deposits via a two-step thermochemical /H2O splitting process, and specifically in the
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula . It is one of the iron oxide, oxides of iron, and is ferrimagnetism, ferrimagnetic; it is attracted to a magnet and can be magnetization, magnetized to become a ...
/
wüstite Wüstite ( Fe O, sometimes also written as Fe0.95O) is a mineral form of mostly iron(II) oxide found with meteorites and native iron. It has a grey colour with a greenish tint in reflected light. Wüstite crystallizes in the isometric-hexoc ...
redox cycle. Although thermolysis is the most direct, one-step process for splitting molecules, it is neither practical nor efficient in the case of either H2O or CO2. This is because the process requires a very high temperature (> 2,500 °C) to achieve a useful dissociation fraction. This poses problems in finding suitable reactor materials, losses due to vigorous product recombination, and excessive aperture radiation losses when concentrated solar heat is used. The magnetite/wustite redox cycle was first proposed for solar application on earth by Nakamura, and was one of the first used for solar-driven two-step water splitting. In this cycle, water reacts with wustite (FeO) to form magnetite (Fe3O4) and hydrogen. The summarised reactions in this two-step splitting process are as follows: : Fe3O4 ->
text Text may refer to: Written word * Text (literary theory) In literary theory, a text is any object that can be "read", whether this object is a work of literature, a street sign, an arrangement of buildings on a city block, or styles of clothi ...
+ \overbrace^
and the obtained FeO is used for the thermal splitting of water or CO2 : : : This process is repeated cyclically. The above process results in a substantial reduction in the thermal input of energy if compared with the most direct, one-step process for splitting molecules. However, the process needs
wüstite Wüstite ( Fe O, sometimes also written as Fe0.95O) is a mineral form of mostly iron(II) oxide found with meteorites and native iron. It has a grey colour with a greenish tint in reflected light. Wüstite crystallizes in the isometric-hexoc ...
(FeO) to start the cycle, but on Mars there is no wustite or at least not in significant amounts. Nevertheless, wustite can be easily obtained by reduction of hematite (Fe2O3) which is an abundant material on Mars, being especially conspicuous are the strong hematite deposits located at Terra Meridiani. The use of wustite from the hematite, abundantly available on Mars, is an industrial process well known on Earth, and is performed by the following two main reduction reactions: : : The proposed ''2001 Mars Surveyor'' lander was to demonstrate manufacture of oxygen from the
atmosphere of Mars The atmosphere of Mars is the layer of gases surrounding Mars. It is primarily composed of carbon dioxide (95%), molecular nitrogen (2.85%), and argon (2%). It also contains trace levels of water vapor, oxygen, carbon monoxide, hydrogen, and nob ...
, and test solar cell technologies and methods of mitigating the effect of Martian dust on the power systems, but the project was cancelled. The Mars 2020 rover mission includes an ISRU technology demonstrator (the Mars Oxygen ISRU Experiment) that will extract CO2 from the atmosphere and produce O2. It has been suggested that buildings on Mars could be made from
basalt Basalt (; ) is an aphanite, aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the planetary surface, surface of a terrestrial ...
as it has good insulating properties. An underground structure of this type would be able to protect life forms against radiation exposure. All of the resources required to make plastics exist on Mars. Many of these complex reactions are able to be completed from the gases harvested from the martian atmosphere. Traces of free oxygen, carbon monoxide, water and methane are all known to exist. Hydrogen and oxygen can be made by the electrolysis of water, carbon monoxide and oxygen by the electrolysis of carbon dioxide and methane by the Sabatier reaction of carbon dioxide and hydrogen. These basic reactions provide the building blocks for more complex reaction series which are able to make plastics.
Ethylene Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula or . It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon–carbon bond, carbon–carbon doub ...
is used to make plastics such as
polyethylene Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bott ...
and
polypropylene Polypropylene (PP), also known as polypropene, is a thermoplastic polymer used in a wide variety of applications. It is produced via chain-growth polymerization from the monomer Propene, propylene. Polypropylene belongs to the group of polyolefin ...
and can be made from carbon monoxide and hydrogen: : .


Moon

The Moon possesses abundant raw materials that are potentially relevant to a hierarchy of future applications, beginning with the use of lunar materials to facilitate human activities on the
Moon The Moon is Earth's only natural satellite. It Orbit of the Moon, orbits around Earth at Lunar distance, an average distance of (; about 30 times Earth diameter, Earth's diameter). The Moon rotation, rotates, with a rotation period (lunar ...
itself and progressing to the use of lunar resources to underpin a future industrial capability within the Earth-Moon system. Natural resources include solar power, oxygen, water, hydrogen, and metals. The lunar highland material
anorthite Anorthite (< ''an'' 'not' + ''ortho'' 'straight') is the
aluminium Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
ore. Smelters can produce pure aluminium, calcium metal, oxygen and silica glass from anorthite. Raw anorthite is also good for making fiberglass and other glass and ceramic products. One particular processing technique is to use
fluorine Fluorine is a chemical element; it has Chemical symbol, symbol F and atomic number 9. It is the lightest halogen and exists at Standard temperature and pressure, standard conditions as pale yellow Diatomic molecule, diatomic gas. Fluorine is extre ...
brought from Earth as potassium fluoride to separate the raw materials from the lunar rocks. Over twenty different methods have been proposed for
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
extraction from the lunar regolith. Oxygen is often found in iron-rich lunar minerals and glasses as
iron oxide An iron oxide is a chemical compound composed of iron and oxygen. Several iron oxides are recognized. Often they are non-stoichiometric. Ferric oxyhydroxides are a related class of compounds, perhaps the best known of which is rust. Iron ...
. The oxygen can be extracted by heating the material to temperatures above 900 °C and exposing it to hydrogen gas. The basic equation is: FeO + H2 → Fe + H2O. This process has recently been made much more practical by the discovery of significant amounts of
hydrogen Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
-containing regolith near the Moon's poles by the Clementine spacecraft. Lunar materials may also be used as a general construction material, through processing techniques such as
sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing process used with metals, ceramics, plas ...
, hot-pressing,
liquification In materials science, liquefaction is a process that generates a liquid from a solid or a gas or that generates a non-liquid phase which behaves in accordance with fluid dynamics. It occurs both naturally and artificially. As an example of t ...
, and the cast
basalt Basalt (; ) is an aphanite, aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the planetary surface, surface of a terrestrial ...
method. Cast basalt is used on Earth for construction of, for example, pipes where a high resistance to abrasion is required.
Glass Glass is an amorphous (non-crystalline solid, non-crystalline) solid. Because it is often transparency and translucency, transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window pane ...
and glass fiber are straightforward to process on the Moon and Mars. Basalt fibre has also been made from lunar regolith simulators. Successful tests have been performed on Earth using two lunar regolith simulants MLS-1 and MLS-2. In August 2005, NASA contracted for the production of 16 tonnes of simulated lunar soil, or lunar regolith simulant material for research on how lunar soil could be used ''in situ''.


Martian moons, Ceres, asteroids

Other proposals are based on Phobos and Deimos. These moons are in reasonably high orbits above Mars, have very low escape velocities, and unlike Mars have return
delta-v Delta-''v'' (also known as "change in velocity"), symbolized as and pronounced , as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or l ...
's from their surfaces to LEO which are less than the return from the Moon. Ceres is further out than Mars, with a higher delta-v, but launch windows and travel times are better, and the surface gravity is just 0.028 g, with a very low escape velocity of 510 m/s. Researchers have speculated that the interior configuration of Ceres includes a water-ice-rich mantle over a rocky core. Near Earth Asteroids and bodies in the
asteroid An asteroid is a minor planet—an object larger than a meteoroid that is neither a planet nor an identified comet—that orbits within the Solar System#Inner Solar System, inner Solar System or is co-orbital with Jupiter (Trojan asteroids). As ...
belt could also be sources of raw materials for ISRU.


Planetary atmospheres

Proposals have been made for "mining" for
rocket propulsion A rocket (from , and so named for its shape) is a vehicle that uses jet propulsion to Acceleration, accelerate without using any surrounding Atmosphere of Earth, air. A rocket engine produces thrust by Reaction (physics), reaction to exhaust ex ...
, using what is called a Propulsive Fluid Accumulator. Atmospheric gases like oxygen and
argon Argon is a chemical element; it has symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
could be extracted from the atmosphere of planets like the Earth, Mars, and the outer
giant planet A giant planet, sometimes referred to as a jovian planet (''Jove'' being another name for the Roman god Jupiter (mythology), Jupiter), is a diverse type of planet much larger than Earth. Giant planets are usually primarily composed of low-boiling ...
s by Propulsive Fluid Accumulator satellites in low orbit.


ISRU capability classification (NASA)

In October 2004, NASA's Advanced Planning and Integration Office commissioned an ISRU capability roadmap team. The team's report, along with those of 14 other capability roadmap teams, were published 22 May 2005. The report identifies seven ISRU capabilities: # resource extraction, # material handling and transport, # resource processing, # surface manufacturing with ''in situ'' resources, # surface construction, # surface ISRU product and consumable storage and distribution, and # ISRU unique development and certification capabilities. The report focuses on lunar and martian environments. It offers a detailed timeline and capability roadmap to 2040 but it assumes lunar landers in 2010 and 2012.


ISRU technology demonstrators and prototypes

The
Mars Surveyor 2001 Lander The Mars Surveyor 2001 project was a multi-part Mars exploration mission intended as a follow-up to Mars Surveyor '98. After the two probes of the 1998 project, Mars Climate Orbiter and Mars Polar Lander, were both lost, NASA's "better, faster, ...
was intended to carry to Mars a test payload, MIP (Mars ISPP Precursor), that was to demonstrate manufacture of
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
from the atmosphere of Mars,D. Kaplan ''et al.''
THE MARS IN-SITU-PROPELLANT-PRODUCTION PRECURSOR (MIP) FLIGHT DEMONSTRATION
, paper presented at ''Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration'', Lunar and Planetary Institute, 2–4 October 1999, Houston, Texas.
but the mission was cancelled. The Mars Oxygen ISRU Experiment (MOXIE) is a 1% scale prototype model aboard the
Mars 2020 Mars 2020 is a NASA mission that includes the rover ''Perseverance (rover), Perseverance'', the now-retired small robotic helicopter ''Ingenuity (helicopter), Ingenuity'', and associated delivery systems, as part of the Mars Exploration Progra ...
rover ''Perseverance'' that produces
oxygen Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
from Martian atmospheric carbon dioxide ( CO2) in a process called solid oxide electrolysis. The experiment produced its first 5.37 grams of oxygen on 20 April 2021. The lunar ''Resource Prospector'' rover was designed to scout for resources on a polar region of the Moon, and it was proposed to be launched in 2022. The mission concept was in its pre-formulation stage, and a prototype rover was being tested when it was scrapped in April 2018. Its science instruments will be flown instead on several commercial lander missions contracted by NASA's new Commercial Lunar Payload Services (CLSP) program, that aims to focus on testing various lunar ISRU processes by landing several payloads on multiple commercial landers and rovers. The first formal solicitation was expected in 2019. The spiritual successor to the Resource Prospector became VIPER (rover), that was also cancelled in 2024.


See also

* * * * * * * * * * * * * * * * * * * * *


References


Further reading


Resource Utilization Concepts for MoonMars
ByIris Fleischer, Olivia Haider, Morten W. Hansen, Robert Peckyno, Daniel Rosenberg and Robert E. Guinness; 30 September 2003; IAC Bremen, 2003 (29 Sept – 3 Oct 2003) and MoonMars Workshop (26–28 Sept 2003, Bremen). Accessed on 18 January 2010. *


External links


UW AA Dept. ISRU Research Lab ISRU solar cell manufactureISRU on the MoonMoon Ice For LEO to GEO Transfers
Orders of magnitude lower cost for rocket propellant if lunar ice is present
Homesteading the Planets with Local Materials
*{{Cite news , url=https://www.bbc.co.uk/news/science-environment-21144769 , title=New venture 'to mine asteroids' , work=
BBC News BBC News is an operational business division of the British Broadcasting Corporation (BBC) responsible for the gathering and broadcasting of news and current affairs in the UK and around the world. The department is the world's largest broad ...
, date=22 January 2013 , first=Paul , last=Rincon
In-Situ Resource Utilization (ISRU) Capabilities
nasa.gov Missions to Mars Space colonization Exploration of the Moon Self-sustainability Space manufacturing Natural resources