Immunoproteasome
   HOME

TheInfoList



OR:

An immunoproteasome is a type of
proteasome Proteasomes are essential protein complexes responsible for the degradation of proteins by proteolysis, a chemical reaction that breaks peptide bonds. Enzymes that help such reactions are called proteases. Proteasomes are found inside all e ...
that degrades
ubiquitin Ubiquitin is a small (8.6  kDa) regulatory protein found in most tissues of eukaryotic organisms, i.e., it is found ''ubiquitously''. It was discovered in 1975 by Gideon Goldstein and further characterized throughout the late 1970s and 19 ...
-labeled
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residue (biochemistry), residues. Proteins perform a vast array of functions within organisms, including Enzyme catalysis, catalysing metab ...
s found in the
cytoplasm The cytoplasm describes all the material within a eukaryotic or prokaryotic cell, enclosed by the cell membrane, including the organelles and excluding the nucleus in eukaryotic cells. The material inside the nucleus of a eukaryotic cell a ...
in cells exposed to oxidative stress and proinflammatory stimuli. In general, proteasomes consist of a regulatory and a catalytic part. Immunoproteasomes are induced by
interferon gamma Interferon gamma (IFNG or IFN-γ) is a dimerized soluble cytokine that is the only member of the type II class of interferons. The existence of this interferon, which early in its history was known as immune interferon, was described by E. F. ...
(but also by other
proinflammatory cytokine An inflammatory cytokine or proinflammatory cytokine is a type of signaling molecule (a cytokine) that is secreted from immune cells like helper T cells (Th) and macrophages, and certain other cell types that promote inflammation. They include int ...
s) and
oxidative stress Oxidative stress reflects an imbalance between the systemic manifestation of reactive oxygen species and a biological system's ability to readily detoxify the reactive intermediates or to repair the resulting damage. Disturbances in the normal ...
, which in the cell triggers the transcription of three catalytic subunits that do not occur in the classical proteasome. Another possible variation of proteasome is the thymoproteasome, which is located in the thymus and folds to present peptides to naive
T cell T cells (also known as T lymphocytes) are an important part of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell ...
s.


Structure

Structurally, immunoproteasome is a cylindrical protein complex composed of a catalytic 20S subunit and a 19S regulatory subunit. The catalytic subunit consists of four outer alpha rings and four inner beta rings. In the classical proteasome, the beta (β) 1, β2 and β5 subunits have catalytic activity, which, however, in the immunoproteasome are replaced by the subunits LMP2 (alias β1i), MECL-1 (alias β2i), and LMP7 (alias β5i). The LMP2 protein is composed of 20 amino acids, MECL-1 of 39 amino acids and LMP7 occurs in isoform and therefore can have either 72 or 68 amino acids. The regulatory unit consists of 19 proteins, which are structurally divided into a lid of 9 proteins and a base again of 9 proteins. The RPN10 protein is added to this regulatory complex, which serves to stabilize the structure and as a receptor for ubiquitin.


Function

The function of the immunoproteasome is primarily to specifically cleave proteins into shorter peptides, which can then be displayed on the cell surface together with the
MHC I MHC class I molecules are one of two primary classes of major histocompatibility complex (MHC) molecules (the other being MHC class II) and are found on the cell surface of all nucleated cells in the bodies of vertebrates. They also occur on pla ...
complex. The MHC I complex with bound peptide is then recognized primarily by
cytotoxic T cells A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pa ...
. In order to expose a peptide on the cell surface, the ubiquitin-labeled protein, specifically cleaved into peptides by immunoproteasome, must first be transferred to the endoplasmic reticulum using
TAP1 Transporter associated with antigen processing 1 (TAP1) is a protein that in humans is encoded by the ''TAP1'' gene. A member of the ATP-binding cassette transporter family, it is also known as ABCB2. Function The membrane-associated protein e ...
and TAP2 transporters and chaperones. In the endoplasmic reticulum, the peptide is then bound to an MHC I molecule. The aforementioned LMP2 and LMP7 subunits are encoded by the
PSMB9 Proteasome subunit beta type-9 as known as 20S proteasome subunit beta-1i is a protein that in humans is encoded by the ''PSMB9'' gene. This protein is one of the 17 essential subunits (alpha subunits 1-7, constitutive beta subunits 1-7, and indu ...
(LMP2) and
PSMB8 Proteasome subunit beta type-8 as known as 20S proteasome subunit beta-5i is a protein that in humans is encoded by the ''PSMB8'' gene. This protein is one of the 17 essential subunits (alpha subunits 1–7, constitutive beta subunits 1–7, and ...
(LMP7) genes, which are found in the MHC II gene cluster of the TAP-1 and TAP-2 genes. The LMP2 subunit has the function of chymotrypsin, which means that it cleaves bonds after hydrophobic substances and this prepares peptides with hydrophobic C anchors for the MHC I complex. While LMP7 and MECL-1 subunits form the same as the standard proteasome subunits, i.e. trypsin and chymotrypsin activity


Diseases associated with immunoproteasome

The ability to display peptides on the cell surface is essential for the recognition of cell status by immune cells. Its proper function is therefore essential and when it is disrupted, a disease occurs. Some examples where the effect of immunoproteasome on pathology has been confirmed are given below: Mutations in the ''PSMB8'' gene, which encodes the LMP7 subunit, are involved in a variety of diseases and autoinflammatory disorders, the symptoms of which include skin rash, erythema, spiking fever and lipodystrophy, which are presented since early childhood. These also include Nakajo-Nishimura syndrome, a Japanese autoinflammatory syndrom with lipodystrophy syndrome (JASL) or chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature. This list of syndromes is collectively called proteasome-associated autoinflammatory syndrome. In Alzheimer's disease, a single nucleotide polymorphisms have been found in the immunoproteasome subunit, which increases the chance of its occurrence. Alzheimer's disease is characterized by the presence of
amyloid plaques Amyloid plaques (also known as neuritic plaques, amyloid beta plaques or senile plaques) are extracellular deposits of amyloid beta (Aβ) protein that present mainly in the grey matter of the brain. Degeneration (medical), Degenerative neuronal ...
in which an advanced glycation end product occurs. These advanced glycation end-products are not degraded in the cell and remain in it. It is in amyloid plaques that the active activity of the immunoproteasome is found as a consequence of the cells' efforts to remove plaques.


References

{{reflist Proteins Protein complexes Organelles