I-type Granite
   HOME

TheInfoList



OR:

I-type granites are a category of
granite Granite ( ) is a coarse-grained (phanerite, phaneritic) intrusive rock, intrusive igneous rock composed mostly of quartz, alkali feldspar, and plagioclase. It forms from magma with a high content of silica and alkali metal oxides that slowly coo ...
s originating from igneous sources, first proposed by Chappell and White (1974). They are recognized by a specific set of mineralogical, geochemical, textural, and isotopic characteristics that indicate, for example, magma hybridization in the deep crust. I-type granites are saturated in
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and abundant f ...
but undersaturated in
aluminum Aluminium (or aluminum in North American English) is a chemical element; it has chemical symbol, symbol Al and atomic number 13. It has a density lower than that of other common metals, about one-third that of steel. Aluminium has ...
; petrographic features are representative of the chemical composition of the initial magma. In contrast S-type granites are derived from
partial melting Partial melting is the phenomenon that occurs when a rock is subjected to temperatures high enough to cause certain minerals to melt, but not all of them. Partial melting is an important part of the formation of all igneous rocks and some metamorp ...
of supracrustal or "sedimentary" source rocks.


Petrographic characteristics


Primary minerals

Minerals that crystallized from the silicate melt are considered primary minerals. They are grouped into "Major", "Minor", and "Accessory" minerals based upon their modal percentages in the rock.


Major mineralogy

Primary minerals in I-type granites are
plagioclase Plagioclase ( ) is a series of Silicate minerals#Tectosilicates, tectosilicate (framework silicate) minerals within the feldspar group. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a continu ...
, potassium feldspar, and
quartz Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The Atom, atoms are linked in a continuous framework of SiO4 silicon–oxygen Tetrahedral molecular geometry, tetrahedra, with each oxygen being shared between two tet ...
as in S- and A-type granites.  I-type granites have less quartz then their S-type granite color index equivalents. Plagioclase displays zonation and albite twinning. Potassium feldspar can show perthite textures, carlsbad twinning, and, in
microcline Microcline (KAlSi3O8) is an important igneous rock-forming tectosilicate mineral. It is a potassium-rich alkali feldspar. Microcline typically contains minor amounts of sodium. It is common in granite and pegmatites. Microcline forms during s ...
, tartan twinning. Quartz and potassium feldspar scarcely show granophyric textures.


Minor minerals

Biotite Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula . It is primarily a solid-solution series between the iron- endmember annite, and the magnesium-endmember phlogopite; more al ...
is the most common minor mineral in I-type granites. The biotites in I-type granites are greener in general than those in S-type, both in hand sample and in plane polarized light.  More
mafic A mafic mineral or rock is a silicate mineral or igneous rock rich in magnesium and iron. Most mafic minerals are dark in color, and common rock-forming mafic minerals include olivine, pyroxene, amphibole, and biotite. Common mafic rocks include ...
composition granites, those with a higher color index, contain more
hornblende Hornblende is a complex silicate minerals#Inosilicates, inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common ...
and biotite. Hornblende is a typical I-type granite mineral which never occurs in S-type granite. Hornblende crystals can be twinned and compositionally zoned.


Accessory minerals

Zircon Zircon () is a mineral belonging to the group of nesosilicates and is a source of the metal zirconium. Its chemical name is zirconium(IV) silicate, and its corresponding chemical formula is Zr SiO4. An empirical formula showing some of th ...
and
apatite Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of Hydroxide, OH−, Fluoride, F− and Chloride, Cl− ion, respectively, in the crystal. The formula of the admixture of ...
can occur in both I- and S-type granites, whereas
titanite Titanite, or sphene (), is a calcium titanium nesosilicate mineral, Ca Ti Si O5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly rep ...
(sphene) and
allanite Allanite (also called orthite) is a sorosilicate group of minerals within the broader epidote group that contain a significant amount of rare-earth elements. The mineral occurs mainly in metamorphosed clay-rich sediments and felsic igneous rocks. ...
are considered diagnostic accessory minerals for I-type granites.  Allanite is typically surrounded by radial fractures, caused by the subsolidus increase in volume of allanite as a result of metamict alteration due to
radioactive decay Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is conside ...
. While apatite inclusions are common, they are not as abundant or large as those in S-Type granites. Primary
muscovite Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(Al Si3 O10)( F,O H)2, or ( KF)2( Al2O3)3( SiO2)6( H2O). It has a highly perfect basal cleavage y ...
can occur in weakly peraluminous fractionated I-type granites. Therefore, the presence of muscovite alone is not diagnostic of S-type granites.


Subsolidus and alteration minerals

Minerals that form in the rock as a result of chemical reactions that take place between primary minerals and hydrothermal fluids are classified as subsolidus minerals. They form below the temperature and pressure conditions of the solidus in the absence of a silicate melt. Other alteration minerals may form at surface conditions from interaction of the minerals present in the rock with groundwater and the atmosphere. Alteration of biotites can produce
fluorite Fluorite (also called fluorspar) is the mineral form of calcium fluoride, CaF2. It belongs to the halide minerals. It crystallizes in isometric cubic habit, although octahedral and more complex isometric forms are not uncommon. The Mohs scal ...
,
chlorite The chlorite ion, or chlorine dioxide anion, is the halite (oxyanion), halite with the chemical formula of . A chlorite (compound) is a compound that contains this group, with chlorine in the oxidation state of +3. Chlorites are also known as s ...
, and iron oxides such as
magnetite Magnetite is a mineral and one of the main iron ores, with the chemical formula . It is one of the iron oxide, oxides of iron, and is ferrimagnetism, ferrimagnetic; it is attracted to a magnet and can be magnetization, magnetized to become a ...
and
ilmenite Ilmenite is a titanium-iron oxide mineral with the idealized formula . It is a weakly magnetic black or steel-gray solid. Ilmenite is the most important ore of titanium and the main source of titanium dioxide, which is used in paints, printi ...
. Sericitic alteration is seen within feldspars. In more evolved I-Type granites,
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
occurs as a late stage and/or a subsolidus mineral. Fluorite, like calcite, is rare and where observed it is associated with the more evolved I-type granites. It can form as a late stage product of crystallization.  It is commonly observed as part of the subsolidus alteration of biotite along with chlorite and opaque oxides.
Muscovite Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(Al Si3 O10)( F,O H)2, or ( KF)2( Al2O3)3( SiO2)6( H2O). It has a highly perfect basal cleavage y ...
occurs as an alteration of feldspars and biotite.
Epidote Epidote is a calcium aluminium iron sorosilicate mineral. Description Well developed crystals of epidote, Ca2Al2(Fe3+;Al)(SiO4)(Si2O7)O(OH), crystallizing in the monoclinic system, are of frequent occurrence: they are commonly prismatic in ha ...
can be found, especially on the edges of allanite.


Color index

Color index, or the modal abundance of minerals other than quartz, plagioclase and alkali feldspar (e.g., mafic silicates, oxides, sulfides, phosphates, etc.), can be used to infer the maturity of a granite. Juvenile I-type granites have a higher color index.
Amphibole Amphibole ( ) is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is ...
, biotite,
sphene Titanite, or sphene (), is a calcium titanium nesosilicate mineral, Ca Ti Si O5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly rep ...
, allanite, and oxides are typically more abundant. In contrast, more evolved (i.e. fractionated)  I-type granites have a lower color index, and may contain minerals such as muscovite that are indicative of their fractionated nature.


Textures

I-type granites can have variable textures. I-type granites, like other granite types, can vary in crystal size from
aphanitic Aphanites (adj. ''aphanitic''; ) are igneous rocks that are so fine-grained that their component mineral crystals are not visible to the naked eye (in contrast to phanerites, in which the crystals are visible to the unaided eye). This geo ...
to
phaneritic A phanerite is an igneous rock whose microstructure is made up of crystals large enough to be distinguished with the unaided human eye. In contrast, the crystals in an aphanitic rock are too fine-grained to be identifiable. Phaneritic texture fo ...
; crystal size distributions include porphyritic, seriate, and rarely equigranular textures. Like other granites,
phenocryst image:montblanc granite phenocrysts.JPG, 300px, Granites often have large feldspar, feldspathic phenocrysts. This granite, from the Switzerland, Swiss side of the Mont Blanc massif, has large white phenocrysts of plagioclase (that have trapezoid sh ...
s in I-type granites are commonly feldspars, but can also be
hornblende Hornblende is a complex silicate minerals#Inosilicates, inosilicate series of minerals. It is not a recognized mineral in its own right, but the name is used as a general or field term, to refer to a dark amphibole. Hornblende minerals are common ...
. Amphibole is a diagnostic feature on the hand sample scale between S-type and I-type granites.


Geochemistry


Major elements

I-type granites are rich in silica, calcium and sodium but contain lesser amounts of aluminium and potassium when compared to S-type granites. I-type granites are typically metaluminous to weakly peraluminous. This is expressed mineralogically by the presence of
amphibole Amphibole ( ) is a group of inosilicate minerals, forming prism or needlelike crystals, composed of double chain tetrahedra, linked at the vertices and generally containing ions of iron and/or magnesium in their structures. Its IMA symbol is ...
and accessory minerals such as
sphene Titanite, or sphene (), is a calcium titanium nesosilicate mineral, Ca Ti Si O5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly rep ...
and
allanite Allanite (also called orthite) is a sorosilicate group of minerals within the broader epidote group that contain a significant amount of rare-earth elements. The mineral occurs mainly in metamorphosed clay-rich sediments and felsic igneous rocks. ...
in the metaluminous I-type granites. Note that weakly peraluminous fractionated I-type granites may crystallize primary muscovite and rare
spessartine Spessartine is a nesosilicate, manganese aluminium garnet species, Mn2+3Al2(SiO4)3. Gemological Institute of America, ''GIA Gem Reference Guide'' 1995, This mineral is sometimes mistakenly referred to as ''spessartite''. Spessartine's name is ...
-rich
garnet Garnets () are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives. Garnet minerals, while sharing similar physical and crystallographic properties, exhibit a wide range of chemical compositions, de ...
.


Trace and rare earth elements

The rare earth element diagrams of I-type granite suites tend to be flatter than those of S-type granites, which has been inferred to be caused by the lesser amounts of apatite in I-type granites.  I-type granites have lower
rubidium Rubidium is a chemical element; it has Symbol (chemistry), symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have ...
/
strontium Strontium is a chemical element; it has symbol Sr and atomic number 38. An alkaline earth metal, it is a soft silver-white yellowish metallic element that is highly chemically reactive. The metal forms a dark oxide layer when it is exposed to ...
(Rb/Sr) ratios than S-type granites.


Isotopic characteristics

Initial strontium isotopic ratios (87Sr/86Sr)''i'' are a good differentiator between I- and S-type granites, with I-type granites having lower initial strontium isotopic ratios than S-type granites.


Interpretation(s)


Source characteristics

I-type granites are interpreted to be generated from the melting of igneous rocks. The “I” in I-type in fact stands for igneous. This interpretation was made by Chappell and White in their 1974 paper based on their observations in the Lachlan Fold belt of southeastern
Australia Australia, officially the Commonwealth of Australia, is a country comprising mainland Australia, the mainland of the Australia (continent), Australian continent, the island of Tasmania and list of islands of Australia, numerous smaller isl ...
.


The I-S line

The I-S line is an observed contact between I- and S-type granites in an igneous
terrane In geology, a terrane (; in full, a tectonostratigraphic terrane) is a crust fragment formed on a tectonic plate (or broken off from it) and accreted or " sutured" to crust lying on another plate. The crustal block or fragment preserves its d ...
. This contact is usually clearly defined; one example of this occurring is within the Lachlan fold belt of Australia. The I-S line is interpreted to be the location of a paleo-structure in the subsurface that separated the generation zones of the two different melts.


Suites and supersuites

Granite plutons can be grouped into suites and super suites by their source regions, which in turn are interpreted by comparing their compositions. This interpretation comes from the plotting of different element concentrations against the level of evolution of the granite, usually as percent silica or its magnesium to iron ratio. Igneous rocks with the same source region will plot along a line in silica to element space.


Restite unmixing

Granites traced to the same source region can often have very variable mineralogy; color index for example can vary greatly within the same batholith. In addition, many minerals resist melting and would not melt at the temperatures known to create the magmas that form I-type granites. One model that explains this mineralogic anomaly is restite unmixing. In this model, minerals that are resistant to melting, such as the color index minerals, do not melt but are rather brought up by the melt in solid state. Melts that are farther from their source regions would therefore contain fewer color index minerals, while those closer to their source regions would have a higher color index. This model supplements the models of partial melting and fractional crystallization.


Other models

Other models include magma mixing, crustal assimilation, and source region mixing. More recent studies have shown that the source regions of I-type and S-type magmas cannot be homogeneously igneous or sedimentary, respectively. Instead, many magmas show signs of being sourced from a combination of source materials. These magmas can be characterized by having a series of
neodymium Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
and
hafnium Hafnium is a chemical element; it has symbol Hf and atomic number 72. A lustrous, silvery gray, tetravalent transition metal, hafnium chemically resembles zirconium and is found in many zirconium minerals. Its existence was predicted by Dm ...
isotope characteristics that can be thought of as a combination of both I- and S-type isotopic characteristics. Magma mixing is another aspect of granite formation that must be taken into account when observing granites. Magma mixing occurs when magmas of a different composition intrude a larger magma body. In some cases, the melts are
immiscible Miscibility () is the property of two chemical substance, substances to mix in all mixing ratio, proportions (that is, to fully dissolution (chemistry), dissolve in each other at any concentration), forming a homogeneity and heterogeneity, homoge ...
and stay separated to form pillow like collections of denser mafic magmas on the bottom of less dense dense felsic magma chambers. The mafic
pillow basalt Basalt (; ) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron ( mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% o ...
s will demonstrate a felsic matrix, suggesting magma mingling. Alternatively, the melts mix together and form a magma of a composition intermediate to the intrusive and intruded melt.


References

{{reflist Igneous rocks