HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola. Also, similarly to how the derivatives of and are and respectively, the derivatives of and are and respectively. Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nab ...
in
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
.
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nab ...
s are important in many areas of physics, including electromagnetic theory, heat transfer,
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, and special relativity. The basic hyperbolic functions are: * hyperbolic sine "" (), * hyperbolic cosine "" (),''Collins Concise Dictionary'', p. 328 from which are derived: * hyperbolic tangent "" (), * hyperbolic cosecant "" or "" () * hyperbolic secant "" (), * hyperbolic cotangent "" (), corresponding to the derived trigonometric functions. The inverse hyperbolic functions are: * area hyperbolic sine "" (also denoted "", "" or sometimes "") * area hyperbolic cosine "" (also denoted "", "" or sometimes "") * and so on. The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector. In
complex analysis Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathemati ...
, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane. By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument. Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert. Riccati used and (''sinus/cosinus circulare'') to refer to circular functions and and (''sinus/cosinus hyperbolico'') to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today. The abbreviations , , , are also currently used, depending on personal preference.


Notation


Definitions

There are various equivalent ways to define the hyperbolic functions.


Exponential definitions

In terms of the exponential function: * Hyperbolic sine: the odd part of the exponential function, that is, \sinh x = \frac = \frac = \frac . * Hyperbolic cosine: the even part of the exponential function, that is, \cosh x = \frac = \frac = \frac . * Hyperbolic tangent: \tanh x = \frac = \frac = \frac . * Hyperbolic cotangent: for , \coth x = \frac = \frac = \frac . * Hyperbolic secant: \operatorname x = \frac = \frac = \frac . * Hyperbolic cosecant: for , \operatorname x = \frac = \frac = \frac .


Differential equation definitions

The hyperbolic functions may be defined as solutions of differential equations: The hyperbolic sine and cosine are the solution of the system \begin c'(x)&=s(x),\\ s'(x)&=c(x),\\ \end with the initial conditions s(0) = 0, c(0) = 1. The initial conditions make the solution unique; without them any pair of functions (a e^x + b e^, a e^x - b e^) would be a solution. and are also the unique solution of the equation , such that , for the hyperbolic cosine, and , for the hyperbolic sine.


Complex trigonometric definitions

Hyperbolic functions may also be deduced from trigonometric functions with complex arguments: * Hyperbolic sine: \sinh x = -i \sin (i x). * Hyperbolic cosine: \cosh x = \cos (i x). * Hyperbolic tangent: \tanh x = -i \tan (i x). * Hyperbolic cotangent: \coth x = i \cot (i x). * Hyperbolic secant: \operatorname x = \sec (i x). * Hyperbolic cosecant:\operatorname x = i \csc (i x). where is the
imaginary unit The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition a ...
with . The above definitions are related to the exponential definitions via Euler's formula (See below).


Characterizing properties


Hyperbolic cosine

It can be shown that the area under the curve of the hyperbolic cosine (over a finite interval) is always equal to the arc length corresponding to that interval: \text = \int_a^b \cosh x \,dx = \int_a^b \sqrt \,dx = \text


Hyperbolic tangent

The hyperbolic tangent is the (unique) solution to the differential equation , with .


Useful relations

The hyperbolic functions satisfy many identities, all of them similar in form to the trigonometric identities. In fact, Osborn's rule states that one can convert any trigonometric identity for \theta, 2\theta, 3\theta or \theta and \varphi into a hyperbolic identity, by expanding it completely in terms of integral powers of sines and cosines, changing sine to sinh and cosine to cosh, and switching the sign of every term containing a product of two sinhs. Odd and even functions: \begin \sinh (-x) &= -\sinh x \\ \cosh (-x) &= \cosh x \end Hence: \begin \tanh (-x) &= -\tanh x \\ \coth (-x) &= -\coth x \\ \operatorname (-x) &= \operatorname x \\ \operatorname (-x) &= -\operatorname x \end Thus, and are even functions; the others are odd functions. \begin \operatorname x &= \operatorname \left(\frac\right) \\ \operatorname x &= \operatorname \left(\frac\right) \\ \operatorname x &= \operatorname \left(\frac\right) \end Hyperbolic sine and cosine satisfy: \begin \cosh x + \sinh x &= e^x \\ \cosh x - \sinh x &= e^ \\ \cosh^2 x - \sinh^2 x &= 1 \end the last of which is similar to the
Pythagorean trigonometric identity The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae, it is one of the basic relations ...
. One also has \begin \operatorname ^ x &= 1 - \tanh^ x \\ \operatorname ^ x &= \coth^ x - 1 \end for the other functions.


Sums of arguments

\begin \sinh(x + y) &= \sinh x \cosh y + \cosh x \sinh y \\ \cosh(x + y) &= \cosh x \cosh y + \sinh x \sinh y \\ px \tanh(x + y) &= \frac \\ \end particularly \begin \cosh (2x) &= \sinh^2 + \cosh^2 = 2\sinh^2 x + 1 = 2\cosh^2 x - 1\\ \sinh (2x) &= 2\sinh x \cosh x \\ \tanh (2x) &= \frac \\ \end Also: \begin \sinh x + \sinh y &= 2 \sinh \left(\frac\right) \cosh \left(\frac\right)\\ \cosh x + \cosh y &= 2 \cosh \left(\frac\right) \cosh \left(\frac\right)\\ \end


Subtraction formulas

\begin \sinh(x - y) &= \sinh x \cosh y - \cosh x \sinh y \\ \cosh(x - y) &= \cosh x \cosh y - \sinh x \sinh y \\ \tanh(x - y) &= \frac \\ \end Also: \begin \sinh x - \sinh y &= 2 \cosh \left(\frac\right) \sinh \left(\frac\right)\\ \cosh x - \cosh y &= 2 \sinh \left(\frac\right) \sinh \left(\frac\right)\\ \end


Half argument formulas

\begin \sinh\left(\frac\right) &= \frac &&= \sgn x \, \sqrt \frac \\ px \cosh\left(\frac\right) &= \sqrt \frac\\ px \tanh\left(\frac\right) &= \frac &&= \sgn x \, \sqrt \frac = \frac \end where is the sign function. If , then \tanh\left(\frac\right) = \frac = \coth x - \operatorname x


Square formulas

\begin \sinh^2 x &= \tfrac(\cosh 2x - 1) \\ \cosh^2 x &= \tfrac(\cosh 2x + 1) \end


Inequalities

The following inequality is useful in statistics: \operatorname(t) \leq e^ It can be proved by comparing term by term the Taylor series of the two functions.


Inverse functions as logarithms

\begin \operatorname (x) &= \ln \left(x + \sqrt \right) \\ \operatorname (x) &= \ln \left(x + \sqrt \right) && x \geq 1 \\ \operatorname (x) &= \frac\ln \left( \frac \right) && , x , < 1 \\ \operatorname (x) &= \frac\ln \left( \frac \right) && , x, > 1 \\ \operatorname (x) &= \ln \left( \frac + \sqrt\right) = \ln \left( \frac \right) && 0 < x \leq 1 \\ \operatorname (x) &= \ln \left( \frac + \sqrt\right) && x \ne 0 \end


Derivatives

\begin \frac\sinh x &= \cosh x \\ \frac\cosh x &= \sinh x \\ \frac\tanh x &= 1 - \tanh^2 x = \operatorname^2 x = \frac \\ \frac\coth x &= 1 - \coth^2 x = -\operatorname^2 x = -\frac && x \neq 0 \\ \frac\operatorname x &= - \tanh x \operatorname x \\ \frac\operatorname x &= - \coth x \operatorname x && x \neq 0 \end \begin \frac\operatorname x &= \frac \\ \frac\operatorname x &= \frac && 1 < x \\ \frac\operatorname x &= \frac && , x, < 1 \\ \frac\operatorname x &= \frac && 1 < , x, \\ \frac\operatorname x &= -\frac && 0 < x < 1 \\ \frac\operatorname x &= -\frac && x \neq 0 \end


Second derivatives

Each of the functions and is equal to its second derivative, that is: \frac\sinh x = \sinh x \frac\cosh x = \cosh x \, . All functions with this property are linear combinations of and , in particular the exponential functions e^x and e^ .


Standard integrals

\begin \int \sinh (ax)\,dx &= a^ \cosh (ax) + C \\ \int \cosh (ax)\,dx &= a^ \sinh (ax) + C \\ \int \tanh (ax)\,dx &= a^ \ln (\cosh (ax)) + C \\ \int \coth (ax)\,dx &= a^ \ln \left, \sinh (ax)\ + C \\ \int \operatorname (ax)\,dx &= a^ \arctan (\sinh (ax)) + C \\ \int \operatorname (ax)\,dx &= a^ \ln \left, \tanh \left( \frac \right) \ + C = a^ \ln\left, \coth \left(ax\right) - \operatorname \left(ax\right)\ + C = -a^\operatorname \left(\cosh\left(ax\right)\right) +C \end The following integrals can be proved using hyperbolic substitution: \begin \int & = \operatorname \left( \frac \right) + C \\ \int &= \sgn \operatorname \left, \frac \ + C \\ \int \,du & = a^\operatorname \left( \frac \right) + C && u^2 < a^2 \\ \int \,du & = a^\operatorname \left( \frac \right) + C && u^2 > a^2 \\ \int & = -a^\operatorname\left, \frac \ + C \\ \int & = -a^\operatorname\left, \frac \ + C \end where ''C'' is the
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connect ...
.


Taylor series expressions

It is possible to express explicitly the
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor se ...
at zero (or the Laurent series, if the function is not defined at zero) of the above functions. \sinh x = x + \frac + \frac + \frac + \cdots = \sum_^\infty \frac This series is convergent for every complex value of . Since the function is odd, only odd exponents for occur in its Taylor series. \cosh x = 1 + \frac + \frac + \frac + \cdots = \sum_^\infty \frac This series is convergent for every complex value of . Since the function is even, only even exponents for occur in its Taylor series. The sum of the sinh and cosh series is the infinite series expression of the exponential function. The following series are followed by a description of a subset of their domain of convergence, where the series is convergent and its sum equals the function. \begin \tanh x &= x - \frac + \frac - \frac + \cdots = \sum_^\infty \frac, \qquad \left , x \right , < \frac \\ \coth x &= x^ + \frac - \frac + \frac + \cdots = \sum_^\infty \frac , \qquad 0 < \left , x \right , < \pi \\ \operatorname x &= 1 - \frac + \frac - \frac + \cdots = \sum_^\infty \frac , \qquad \left , x \right , < \frac \\ \operatorname x &= x^ - \frac +\frac -\frac + \cdots = \sum_^\infty \frac , \qquad 0 < \left , x \right , < \pi \end where: *B_n is the ''n''th Bernoulli number *E_n is the ''n''th Euler number


Infinite products and continued fractions

The following expansions are valid in the whole complex plane: :\sinh x = x\prod_^\infty\left(1+\frac\right) = \cfrac :\cosh x = \prod_^\infty\left(1+\frac\right) = \cfrac :\tanh x = \cfrac


Comparison with circular functions

The hyperbolic functions represent an expansion of trigonometry beyond the
circular function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in ...
s. Both types depend on an
argument An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialect ...
, either circular angle or hyperbolic angle. Since the area of a circular sector with radius and angle (in radians) is , it will be equal to when . In the diagram, such a circle is tangent to the hyperbola ''xy'' = 1 at (1,1). The yellow sector depicts an area and angle magnitude. Similarly, the yellow and red sectors together depict an area and hyperbolic angle magnitude. The legs of the two
right triangle A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right ...
s with hypotenuse on the ray defining the angles are of length times the circular and hyperbolic functions. The hyperbolic angle is an invariant measure with respect to the squeeze mapping, just as the circular angle is invariant under rotation.
Mellen W. Haskell Mellen Woodman Haskell (March 17, 1863 – January 15, 1948) was an American mathematician, specializing in geometry, group theory, and applications of group theory to geometry. Education and career After secondary education at Roxbury Latin Scho ...
, "On the introduction of the notion of hyperbolic functions",
Bulletin of the American Mathematical Society The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society. Scope It publishes surveys on contemporary research topics, written at a level accessible to non-experts. ...
1:6:155–9
full text
/ref> The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.


Relationship to the exponential function

The decomposition of the exponential function in its even and odd parts gives the identities e^x = \cosh x + \sinh x, and e^ = \cosh x - \sinh x. Combined with Euler's formula e^ = \cos x + i\sin x, this gives e^=(\cosh x+\sinh x)(\cos y+i\sin y) for the general complex exponential function. Additionally, e^x = \sqrt = \frac


Hyperbolic functions for complex numbers

Since the exponential function can be defined for any complex argument, we can also extend the definitions of the hyperbolic functions to complex arguments. The functions and are then holomorphic. Relationships to ordinary trigonometric functions are given by Euler's formula for complex numbers: \begin e^ &= \cos x + i \sin x \\ e^ &= \cos x - i \sin x \end so: \begin \cosh(ix) &= \frac \left(e^ + e^\right) = \cos x \\ \sinh(ix) &= \frac \left(e^ - e^\right) = i \sin x \\ \cosh(x+iy) &= \cosh(x) \cos(y) + i \sinh(x) \sin(y) \\ \sinh(x+iy) &= \sinh(x) \cos(y) + i \cosh(x) \sin(y) \\ \tanh(ix) &= i \tan x \\ \cosh x &= \cos(ix) \\ \sinh x &= - i \sin(ix) \\ \tanh x &= - i \tan(ix) \end Thus, hyperbolic functions are periodic with respect to the imaginary component, with period 2 \pi i (\pi i for hyperbolic tangent and cotangent).


See also

*
e (mathematical constant) The number , also known as Euler's number, is a mathematical constant approximately equal to 2.71828 that can be characterized in many ways. It is the base of the natural logarithms. It is the limit of as approaches infinity, an express ...
*
Equal incircles theorem In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjace ...
, based on sinh * Hyperbolic growth * Inverse hyperbolic functions * List of integrals of hyperbolic functions *
Poinsot's spirals In mathematics, Poinsot's spirals are two spirals represented by the polar equations : r = a\ \operatorname (n\theta) : r = a\ \operatorname (n\theta) where csch is the hyperbolic cosecant, and sech is the hyperbolic secant. They are named afte ...
* Sigmoid function * Soboleva modified hyperbolic tangent *
Trigonometric functions In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in ...


References


External links

*
Hyperbolic functions
on PlanetMath
GonioLab
Visualization of the unit circle, trigonometric and hyperbolic functions (
Java Web Start In computing, Java Web Start (also known as JavaWS, javaws or JAWS) is a deprecated framework developed by Sun Microsystems (now Oracle) that allows users to start application software for the Java Platform directly from the Internet using a web ...
)
Web-based calculator of hyperbolic functions
{{DEFAULTSORT:Hyperbolic Function Exponentials Hyperbolic geometry Analytic functions