Hyperbolic is an adjective describing something that resembles or pertains to a
hyperbola
In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, c ...
(a curve), to
hyperbole
Hyperbole (; adj. hyperbolic ) is the use of exaggeration as a rhetorical device or figure of speech. In rhetoric, it is also sometimes known as auxesis (literally 'growth'). In poetry and oratory, it emphasizes, evokes strong feelings, and c ...
(an overstatement or exaggeration), or to
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
.
The following phenomena are described as ''hyperbolic'' because they manifest hyperbolas, not because something about them is exaggerated.
*
Hyperbolic angle
In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of ''xy'' = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functio ...
, an unbounded variable referring to a hyperbola instead of a circle
*
Hyperbolic coordinates, location by geometric mean and hyperbolic angle in quadrant I
*
Hyperbolic distribution, a probability distribution characterized by the logarithm of the probability density function being a hyperbola
*
Hyperbolic equilibrium point In the study of dynamical systems, a hyperbolic equilibrium point or hyperbolic fixed point is a fixed point that does not have any center manifolds. Near a hyperbolic point the orbits of a two-dimensional, non-dissipative system resemble hyperb ...
, a fixed point that does not have any center manifolds
*
Hyperbolic function
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the ...
, an analog of an ordinary trigonometric or circular function
*
Hyperbolic geometric graph, a random network generated by connecting nearby points sprinkled in a hyperbolic space
*
Hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
, a non-Euclidean geometry
*
Hyperbolic group
In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a ''word hyperbolic group'' or ''Gromov hyperbolic group'', is a finitely generated group equipped with a word metric satisfying certain properties abst ...
, a finitely generated group equipped with a word metric satisfying certain properties characteristic of hyperbolic geometry
*
Hyperbolic growth, growth of a quantity toward a finite-time singularity
*
Hyperbolic logarithm, original designation of natural logarithm (1647–1748) before Euler's formulation with e
*
Hyperbolic manifold
In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, re ...
, a complete Riemannian ''n''-manifold of constant sectional curvature −1
*
Hyperbolic motion, an isometry in a hyperbolic space
*
Hyperbolic navigation
Hyperbolic navigation is a class of radio navigation systems in which a navigation receiver instrument is used to determine location based on the difference in timing ( phase) of radio waves received from radio navigation beacon transmitters.
...
, a class of radio navigation systems based on the difference in timing between the reception of two signals, without reference to a common clock
* Hyperbolic number, a synonym for
split-complex number
In algebra, a split complex number (or hyperbolic number, also perplex number, double number) has two real number components and , and is written z=x+yj, where j^2=1. The ''conjugate'' of is z^*=x-yj. Since j^2=1, the product of a number wi ...
*
Hyperbolic orthogonality
In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperb ...
, an orthogonality found in pseudo-Euclidean space
*
Hyperbolic paraboloid
In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.
Every pla ...
, a doubly ruled surface shaped like a saddle
*
Hyperbolic partial differential equation
In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can ...
, a partial differential equation (PDE) of order ''n'' that has a well-posed initial value problem for the first ''n''−1 derivatives
* Hyperbolic plane can refer to:
** The 2 dimensional plane in
hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P' ...
(a non-Euclidean geometry)
** The
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
as isotropic quadratic form
** The surface of a
hyperboloid
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by de ...
of one sheet
** One sheet of a
hyperboloid
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by de ...
of two sheets
*
Hyperbolic quaternion
In abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form
:q = a + bi + cj + dk, \quad a,b,c,d \in \mathbb \!
where the squares of i, j, and k are +1 and distinct elemen ...
s, a non-associative algebra, precursor to Minkowski space
* Hyperbolic rotation, a synonym for
squeeze mapping
In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is ''not'' a rotation or shear mapping.
For a fixed positive real number ...
*
Hyperbolic sector
A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points and on the rectangular hyperbola , or the corresponding region when this hyperbola is re-scaled a ...
, a planar region demarcated by radial lines and a hyperbola
*
Hyperbolic soccerball
In geometry, the order-7 truncated triangular tiling, sometimes called the hyperbolic soccerball, is a semiregular tiling of the hyperbolic plane. There are two hexagons and one heptagon on each vertex, forming a pattern similar to a conventiona ...
, a tessellation of the hyperbolic plane
*
Hyperbolic space
In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. ...
, hyperbolic spatial geometry in which every point is a saddle point
*
Hyperbolic trajectory
In astrodynamics or celestial mechanics, a hyperbolic trajectory or hyperbolic orbit is the trajectory of any object around a central body with more than enough speed to escape the central object's gravitational pull. The name derives from the f ...
, a Kepler orbit with eccentricity greater than 1
*
Hyperbolic versor
In mathematics, a versor is a quaternion of norm one (a ''unit quaternion''). The word is derived from Latin ''versare'' = "to turn" with the suffix ''-or'' forming a noun from the verb (i.e. ''versor'' = "the turner"). It was introduced by Wil ...
, a versor parameterized by a hyperbolic angle
See also
*
Exaggeration
Exaggeration is the representation of something as more extreme or dramatic than it really is. Exaggeration may occur intentionally or unintentionally.
Exaggeration can be a rhetorical device or figure of speech. It may be used to evoke stro ...
*
Hyperboloid
In geometry, a hyperboloid of revolution, sometimes called a circular hyperboloid, is the surface generated by rotating a hyperbola around one of its principal axes. A hyperboloid is the surface obtained from a hyperboloid of revolution by de ...
*
Hyperboloid structure
Hyperboloid structures are architectural structures designed using a hyperboloid in one sheet. Often these are tall structures, such as towers, where the hyperboloid geometry's structural strength is used to support an object high above the grou ...
{{disambiguation