Exotic mesons are mesons that have
quantum number
In quantum physics and chemistry, quantum numbers describe values of conserved quantities in the dynamics of a quantum system. Quantum numbers correspond to eigenvalues of operators that commute with the Hamiltonian—quantities that can b ...
s not possible in the
quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
; some proposals for non-standard
quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
mesons could be:
;
glueball
In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong ...
s or gluonium:
Glueball
In particle physics, a glueball (also gluonium, gluon-ball) is a hypothetical composite particle. It consists solely of gluon particles, without valence quarks. Such a state is possible because gluons carry color charge and experience the strong ...
s have no
valence
Valence or valency may refer to:
Science
* Valence (chemistry), a measure of an element's combining power with other atoms
* Degree (graph theory), also called the valency of a vertex in graph theory
* Valency (linguistics), aspect of verbs rel ...
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
s at all.
;
tetraquark
A tetraquark, in particle physics, is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example ...
s:
Tetraquark
A tetraquark, in particle physics, is an exotic meson composed of four valence quarks. A tetraquark state has long been suspected to be allowed by quantum chromodynamics, the modern theory of strong interactions. A tetraquark state is an example ...
s have two valence quark–antiquark pairs.
;hybrid mesons: Hybrid mesons contain a valence quark–antiquark pair and one or more
gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s.
All exotic mesons are classed as
meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticle ...
s because they are
hadron
In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the ele ...
s and carry zero
baryon number
In particle physics, the baryon number is a strictly conserved additive quantum number of a system. It is defined as
::B = \frac\left(n_\text - n_\bar\right),
where ''n''q is the number of quarks, and ''n'' is the number of antiquarks. Baryo ...
. Of these, glueballs must be flavor singlets – that is, must have zero
isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
,
strangeness
In particle physics, strangeness ("''S''") is a property of particles, expressed as a quantum number, for describing decay of particles in strong and electromagnetic interactions which occur in a short period of time. The strangeness of a parti ...
,
charm
Charm may refer to:
Social science
* Charisma, a person or thing's pronounced ability to attract others
* Superficial charm, flattery, telling people what they want to hear
Science and technology
* Charm quark, a type of elementary particle
* Cha ...
,
bottomness
In physics, bottomness (symbol ''B''′ using a prime as plain ''B'' is used already for baryon number) or beauty is a flavour quantum number reflecting the difference between the number of bottom antiquarks (''n'') and the number of bottom ...
, and
topness
Topness (''T'', also called truth), a flavour quantum number, represents the difference between the number of top quarks (t) and number of top antiquarks () that are present in a particle:
:T = n_\text - n_\bar
By convention, top quarks have a ...
. Like all particle states, exotic mesons are specified by the quantum numbers which label representations of the
Poincaré symmetry
Poincaré is a French surname. Notable people with the surname include:
* Henri Poincaré (1854–1912), French physicist, mathematician and philosopher of science
* Henriette Poincaré (1858-1943), wife of Prime Minister Raymond Poincaré
* Lu ...
, q.e., by the
mass
Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
(enclosed in parentheses), and by , where is the
angular momentum
In physics, angular momentum (rarely, moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity—the total angular momentum of a closed sy ...
, is the
intrinsic parity
In quantum mechanics, the intrinsic parity is a phase factor that arises as an eigenvalue of the parity operation x_i \rightarrow x_i' = -x_i (a reflection about the origin). To see that the parity's eigenvalues are phase factors, we assume an ei ...
, and is the
charge conjugation
In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-sym ...
parity; One also often specifies the
isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
of the meson. Typically, every
quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
meson comes in
SU(3)
In mathematics, the special unitary group of degree , denoted , is the Lie group of unitary matrices with determinant 1.
The more general unitary matrices may have complex determinants with absolute value 1, rather than real 1 in the speci ...
flavor nonet: an octet and an associated flavor singlet. A glueball shows up as an extra (''supernumerary'') particle outside the nonet.
In spite of such seemingly simple counting, the assignment of any given state as a glueball, tetraquark, or hybrid remains tentative even today, hence the preference for the more generic term ''exotic meson''. Even when there is agreement that one of several states is one of these non-
quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
mesons, the degree of mixing, and the precise assignment is fraught with uncertainties. There is also the considerable experimental labor of assigning quantum numbers to each state and crosschecking them in other experiments. As a result, all assignments outside the
quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
are tentative. The remainder of this article outlines the situation as it stood at the end of 2004.
Lattice predictions
Lattice QCD
Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the ...
predictions for glueballs are now fairly settled, at least when
virtual quarks are neglected. The two lowest states are
::0
++ with mass of and
::2
++ with mass of
The 0
−+ and exotic glueballs such as 0
−− are all expected to lie above . Glueballs are necessarily isoscalar, with
isospin
In nuclear physics and particle physics, isospin (''I'') is a quantum number related to the up- and down quark content of the particle. More specifically, isospin symmetry is a subset of the flavour symmetry seen more broadly in the interactions ...
= 0.
The ground state ''hybrid mesons'' 0
−+, 1
−+, 1
−−, and 2
−+ all lie a little below . The hybrid with exotic quantum numbers 1
−+ is at . The best lattice computations to date are made in the
quenched approximation, which neglects
virtual quarks loops. As a result, these computations miss mixing with meson states.
0++ states
The data show five isoscalar resonances: (500), (980), (1370), (1500), and (1710). Of these the (500) is usually identified with the of
chiral model
In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning ...
s. The decays and production of (1710) give strong evidence that it is also a meson.
Glueball candidate
The (1370) and (1500) cannot both be a quark model meson, because one is
supernumerary
Supernumerary means "exceeding the usual number".
Supernumerary may also refer to:
* Supernumerary actor, a performer in a film, television show, or stage production who has no role or purpose other than to appear in the background, more commonl ...
. The production of the higher mass state in two
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
reactions such as or reactions is highly suppressed. The decays also give some evidence that one of these could be a glueball.
Tetraquark candidate
The (980) has been identified by some authors as a tetraquark meson, along with the = 1 states (980) and (800). Two long-lived (''narrow'' in the jargon of particle spectroscopy) states: the scalar (0) state (2317) and the vector (1) meson (2460), observed at
CLEO Cleo may refer to:
Entertainment
* ''Cleo'' (magazine), an Australian magazine established in 1972, now active in Indonesia, Malaysia, Singapore, and Thailand
* Cleo (group), a South Korean girl group formed in 1999
* ''Cleo'' (play), by Lawren ...
and
BaBar
Babar ( ur, ), also variously spelled as Baber, Babur, and Babor is a male given name of Pashto, and Persian origin, and a popular male given name in Pakistan. It is generally taken in reference to the Persian ''babr'' ( Persian: ببر), meani ...
, have also been tentatively identified as tetraquark states. However, for these, other explanations are possible.
2 states
Two isoscalar states are definitely identified: (1270) and the ′(1525). No other states have been consistently identified by all experiments. Hence it is difficult to say more about these states.
1 and other states
The two isovector exotics
1(1400) and
1(1600) seem to be well established experimentally. A recent coupled-channel analysis has shown these states, which were initially considered separate, are consistent with a single pole. A second exotic state is disfavored. The assignment of these states as hybrids is favored. Lattice QCD calculations show the lightest with 1 quantum numbers has strong overlap with operators featuring gluonic construction.
The (1800) 0, (1900) 1 and the (1870) 2 are fairly well identified states, which have been tentatively identified as hybrids by some authors. If this identification is correct, then it is a remarkable agreement with lattice computations, which place several hybrids in this range of masses.
See also
*
Quark model
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks which give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)", or the Ei ...
,
meson
In particle physics, a meson ( or ) is a type of hadronic subatomic particle composed of an equal number of quarks and antiquarks, usually one of each, bound together by the strong interaction. Because mesons are composed of quark subparticle ...
s,
baryon
In particle physics, a baryon is a type of composite subatomic particle which contains an odd number of valence quarks (at least 3). Baryons belong to the hadron family of particles; hadrons are composed of quarks. Baryons are also classi ...
s,
quark
A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All common ...
s, and
gluon
A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bi ...
s
*
Exotic hadron
Exotic hadrons are subatomic particles composed of quarks and gluons, but which – unlike "well-known" hadrons such as protons, neutrons and mesons – consist of more than three valence quarks. By contrast, "ordinary" hadrons contain just two ...
s and
exotic baryon
Exotic baryons are a type of hadron (bound states of quarks and gluons) with half-integer spin, but with a quark content different from the three quarks (''qqq'') present in conventional baryons. An example would be pentaquarks, consisting of four ...
s
*
Quantum chromodynamics
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a ty ...
,
flavor, and the
QCD vacuum
In theoretical physics, quantum chromodynamics (QCD) is the theory of the strong interaction between quarks mediated by gluons. Quarks are fundamental particles that make up composite hadrons such as the proton, neutron and pion. QCD is a type ...
*
GlueX
GlueX is a particle physics experiment located at the Thomas Jefferson National Accelerator Facility (JLab) accelerator. Its primary purpose is to better understand the nature of confinement in quantum chromodynamics (QCD) by identifying a spect ...
, an experiment which will explore the spectrum of glueballs and exotic mesons
References
Further reading
*
{{particles
Mesons
Hypothetical composite particles