Huyghens Engine
   HOME

TheInfoList



OR:

Christiaan Huygens, Lord of Zeelhem, ( , ; ; also spelled Huyghens; ; 14 April 1629 – 8 July 1695) was a Dutch
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
,
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate cau ...
,
engineer Engineers, as practitioners of engineering, are professionals who Invention, invent, design, build, maintain and test machines, complex systems, structures, gadgets and materials. They aim to fulfill functional objectives and requirements while ...
,
astronomer An astronomer is a scientist in the field of astronomy who focuses on a specific question or field outside the scope of Earth. Astronomers observe astronomical objects, such as stars, planets, natural satellite, moons, comets and galaxy, galax ...
, and
inventor An invention is a unique or novel device, method, composition, idea, or process. An invention may be an improvement upon a machine, product, or process for increasing efficiency or lowering cost. It may also be an entirely new concept. If an ...
who is regarded as a key figure in the
Scientific Revolution The Scientific Revolution was a series of events that marked the emergence of History of science, modern science during the early modern period, when developments in History of mathematics#Mathematics during the Scientific Revolution, mathemati ...
. In physics, Huygens made seminal contributions to
optics Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of optical instruments, instruments that use or Photodetector, detect it. Optics usually describes t ...
and
mechanics Mechanics () is the area of physics concerned with the relationships between force, matter, and motion among Physical object, physical objects. Forces applied to objects may result in Displacement (vector), displacements, which are changes of ...
, while as an astronomer he studied the
rings of Saturn Saturn has the most extensive and complex ring system of any planet in the Solar System. The rings consist of particles in orbit around the planet made almost entirely of water ice, with a trace component of Rock (geology), rocky material. Parti ...
and discovered its largest moon,
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
. As an engineer and inventor, he improved the design of telescopes and invented the
pendulum clock A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is an approximate harmonic oscillator: It swings back and forth in a precise time interval dep ...
, the most accurate timekeeper for almost 300 years. A talented mathematician and physicist, his works contain the first idealization of a physical problem by a set of
mathematical Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
s, and the first mathematical and mechanistic explanation of an
unobservable An unobservable (also called impalpable) is an entity whose existence, nature, properties, qualities or relations are not directly observable by humans. In philosophy of science, typical examples of "unobservables" are the force of gravity, causa ...
physical phenomenon.Dijksterhuis, F.J. (2008) Stevin, Huygens and the Dutch republic. ''Nieuw archief voor wiskunde'', ''5'', pp. 100–10

/ref> Huygens first identified the correct laws of
elastic collision In physics, an elastic collision occurs between two physical objects in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such a ...
in his work ''De Motu Corporum ex Percussione'', completed in 1656 but published posthumously in 1703.
Gabbey, Alan William Alan Gabbey (born 1938) is an American philosopher and Professor Emeritus of Philosophy at Barnard College. He is also Reader Emeritus in History and Philosophy of Science at Queen's University of Belfast and a ''membre effectif'' of the ...
(1980). Huygens and mechanics. In H.J.M. Bos, M.J.S. Rudwick, H.A.M. Snelders, & R.P.W. Visser (Eds.), ''Studies on Christiaan Huygens'' (pp. 166-199). Swets & Zeitlinger B.V.
In 1659, Huygens derived geometrically the formula in
classical mechanics Classical mechanics is a Theoretical physics, physical theory describing the motion of objects such as projectiles, parts of Machine (mechanical), machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics inv ...
for the
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
in his work ''De vi Centrifuga'', a decade before
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
. In optics, he is best known for his
wave theory of light In physics, physical optics, or wave optics, is the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid. This usage tends not to include effec ...
, which he described in his '' Traité de la Lumière'' (1690). His theory of light was initially rejected in favour of Newton's
corpuscular theory of light In optics, the corpuscular theory of light states that light is made up of small discrete particles called " corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This notion was based on an al ...
, until
Augustin-Jean Fresnel Augustin-Jean Fresnel (10 May 1788 – 14 July 1827) was a French civil engineer and physicist whose research in optics led to the almost unanimous acceptance of the wave theory of light, excluding any remnant of Isaac Newton, Newton's c ...
adapted Huygens's principle to give a complete explanation of the rectilinear propagation and diffraction effects of light in 1821. Today this principle is known as the
Huygens–Fresnel principle The Huygens–Fresnel principle (named after Netherlands, Dutch physicist Christiaan Huygens and France, French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary w ...
. Huygens invented the pendulum clock in 1657, which he patented the same year. His horological research resulted in an extensive analysis of the
pendulum A pendulum is a device made of a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate i ...
in ''
Horologium Oscillatorium (English language, English: ''The Pendulum Clock: or Geometrical Demonstrations Concerning the Motion of Pendula as Applied to Clocks'') is a book published by Dutch mathematician and physicist Christiaan Huygens in 1673 and his major work on p ...
'' (1673), regarded as one of the most important 17th-century works on mechanics. While it contains descriptions of clock designs, most of the book is an analysis of pendular motion and a theory of
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
s. In 1655, Huygens began grinding lenses with his brother Constantijn to build
refracting telescope A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens (optics), lens as its objective (optics), objective to form an image (also referred to a dioptrics, dioptric telescope). The refracting telescope d ...
s. He discovered Saturn's biggest moon, Titan, and was the first to explain Saturn's strange appearance as due to "a thin, flat ring, nowhere touching, and inclined to the ecliptic." In 1662, he developed what is now called the
Huygenian eyepiece An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through an optical devi ...
, a telescope with two lenses to diminish the amount of
dispersion Dispersion may refer to: Economics and finance *Dispersion (finance), a measure for the statistical distribution of portfolio returns * Price dispersion, a variation in prices across sellers of the same item *Wage dispersion, the amount of variat ...
. As a mathematician, Huygens developed the theory of evolutes and wrote on
games of chance A game of chance is in contrast with a game of skill. It is a game whose outcome is strongly influenced by some randomizing device. Common devices used include dice, spinning tops, playing cards, roulette wheels, numbered balls, or in the case ...
and the
problem of points The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal ...
in ''Van Rekeningh in Spelen van Gluck'', which
Frans van Schooten Frans van Schooten Jr. also rendered as Franciscus van Schooten (15 May 1615 – 29 May 1660) was a Dutch mathematician who is most known for popularizing the analytic geometry of René Descartes. He translated La Géométrie in Latin and wrote c ...
translated and published as ''De Ratiociniis in Ludo Aleae'' (1657). The use of
expected value In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first Moment (mathematics), moment) is a generalization of the weighted average. Informa ...
s by Huygens and others would later inspire Jacob Bernoulli's work on
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
.


Biography

Christiaan Huygens was born into a rich and influential Dutch family in
The Hague The Hague ( ) is the capital city of the South Holland province of the Netherlands. With a population of over half a million, it is the third-largest city in the Netherlands. Situated on the west coast facing the North Sea, The Hague is the c ...
on 14 April 1629, the second son of
Constantijn Huygens Sir Constantijn Huygens, Lord of Zuilichem ( , , ; 4 September 159628 March 1687), was a Dutch Golden Age poet and composer. He was also secretary to two Princes of Orange: Frederick Henry and William II, and the father of the scientist C ...
. Christiaan was named after his paternal grandfather.
Henk J. M. Bos Hendrik Jan Maarten "Henk" Bos (17 July 1940 – 12 February 2024) was a Dutch historian of mathematics. Life and career Hendrik Jan Maarten Bos was born in Enschede on 17 July 1940. Bos was a student of Hans Freudenthal and Jerome Ravetz at Ut ...
(14 December 2012
Huygens, Christiaan (Also Huyghens, Christian)
, ''Complete Dictionary of Scientific Biography''. 2008. Encyclopedia.com.
His mother, Suzanna van Baerle, died shortly after giving birth to Huygens's sister. The couple had five children: Constantijn (1628), Christiaan (1629),
Lodewijk Lodewijk () is the Dutch name for Louis. In specific it may refer to: Given name Literature * Lodewijk Hartog van Banda (1916–2006), Dutch comic strip writer * Lodewijk Paul Aalbrecht Boon, (1912–1979) Flemish writer * Lodewijk van De ...
(1631), Philips (1632) and Suzanna (1637).
Constantijn Huygens Sir Constantijn Huygens, Lord of Zuilichem ( , , ; 4 September 159628 March 1687), was a Dutch Golden Age poet and composer. He was also secretary to two Princes of Orange: Frederick Henry and William II, and the father of the scientist C ...
was a diplomat and advisor to the
House of Orange The House of Orange-Nassau (, ), also known as the House of Orange because of the prestige of the princely title of Orange, also referred to as the Fourth House of Orange in comparison with the other noble houses that held the Principality of O ...
, in addition to being a poet and a musician. He corresponded widely with intellectuals across Europe, including
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
,
Marin Mersenne Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for ...
, and
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
. Christiaan was educated at home until the age of sixteen, and from a young age liked to play with miniatures of
mills Mills is the plural form of mill, but may also refer to: As a name * Mills (surname), a common family name of English or Gaelic origin * Mills (given name) *Mills, a fictional British secret agent in a trilogy by writer Manning O'Brine Places U ...
and other machines. He received a
liberal education A liberal education is a system or course of education suitable for the cultivation of a free () human being. It is based on the medieval concept of the liberal arts or, more commonly now, the liberalism of the Age of Enlightenment. It has been d ...
from his father, studying languages,
music Music is the arrangement of sound to create some combination of Musical form, form, harmony, melody, rhythm, or otherwise Musical expression, expressive content. Music is generally agreed to be a cultural universal that is present in all hum ...
,
history History is the systematic study of the past, focusing primarily on the Human history, human past. As an academic discipline, it analyses and interprets evidence to construct narratives about what happened and explain why it happened. Some t ...
,
geography Geography (from Ancient Greek ; combining 'Earth' and 'write', literally 'Earth writing') is the study of the lands, features, inhabitants, and phenomena of Earth. Geography is an all-encompassing discipline that seeks an understanding o ...
,
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
,
logic Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure o ...
, and
rhetoric Rhetoric is the art of persuasion. It is one of the three ancient arts of discourse ( trivium) along with grammar and logic/ dialectic. As an academic discipline within the humanities, rhetoric aims to study the techniques that speakers or w ...
, alongside
dancing Dance is an art form, consisting of sequences of body movements with aesthetic and often symbolic value, either improvised or purposefully selected. Dance can be categorized and described by its choreography, by its repertoire of movements or ...
,
fencing Fencing is a combat sport that features sword fighting. It consists of three primary disciplines: Foil (fencing), foil, épée, and Sabre (fencing), sabre (also spelled ''saber''), each with its own blade and set of rules. Most competitive fe ...
and
horse riding Equestrianism (from Latin , , , 'horseman', 'horse'), commonly known as horse riding ( Commonwealth English) or horseback riding (American English), includes the disciplines of riding, driving, and vaulting. This broad description includes the ...
. In 1644, Huygens had as his mathematical tutor Jan Jansz Stampioen, who assigned the 15-year-old a demanding reading list on contemporary science. Descartes was later impressed by his skills in geometry, as was Mersenne, who christened him the "new
Archimedes Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenis ...
."


Student years

At sixteen years of age, Constantijn sent Huygens to study law and mathematics at
Leiden University Leiden University (abbreviated as ''LEI''; ) is a Public university, public research university in Leiden, Netherlands. Established in 1575 by William the Silent, William, Prince of Orange as a Protestantism, Protestant institution, it holds the d ...
, where he enrolled from May 1645 to March 1647. Frans van Schooten Jr., professor at Leiden's Engineering School, became private tutor to Huygens and his elder brother, Constantijn Jr., replacing Stampioen on the advice of Descartes. Van Schooten brought Huygens's mathematical education up to date, particularly on the work of Viète, Descartes, and
Fermat Pierre de Fermat (; ; 17 August 1601 – 12 January 1665) was a French mathematician who is given credit for early developments that led to infinitesimal calculus, including his technique of adequality. In particular, he is recognized for his d ...
. After two years, starting in March 1647, Huygens continued his studies at the newly founded Orange College, in
Breda Breda ( , , , ) is a List of cities in the Netherlands by province, city and List of municipalities of the Netherlands, municipality in the southern part of the Netherlands, located in the Provinces of the Netherlands, province of North Brabant. ...
, where his father was a
curator A curator (from , meaning 'to take care') is a manager or overseer. When working with cultural organizations, a curator is typically a "collections curator" or an "exhibitions curator", and has multifaceted tasks dependent on the particular ins ...
. Constantijn Huygens was closely involved in the new College, which lasted only to 1669; the rector was
André Rivet André Rivet (Andreas Rivetus) (August 1572 – 7 January 1651) was a French Huguenot theologian. Life Rivet was born at Saint-Maixent, 43 km (27 mi) southwest of Poitiers, France. After completing his education at Bern, he studied the ...
. Christiaan Huygens lived at the home of the jurist Johann Henryk Dauber while attending college, and had mathematics classes with the English lecturer John Pell. His time in Breda ended around the time when his brother Lodewijk, who was enrolled at the school, duelled with another student. Huygens left Breda after completing his studies in August 1649 and had a stint as a diplomat on a mission with Henry, Duke of Nassau. After stays at Bentheim and
Flensburg Flensburg (; Danish language, Danish and ; ; ) is an independent city, independent town in the far north of the Germany, German state of Schleswig-Holstein. After Kiel and Lübeck, it is the third-largest city in Schleswig-Holstein. Flensburg's ...
in Germany, he visited
Copenhagen Copenhagen ( ) is the capital and most populous city of Denmark, with a population of 1.4 million in the Urban area of Copenhagen, urban area. The city is situated on the islands of Zealand and Amager, separated from Malmö, Sweden, by the ...
and
Helsingør Helsingør ( , ; ), classically known in English as Elsinore ( ), is a coastal city in northeastern Denmark. Helsingør Municipality had a population of 63,953 on 1 January 2025, making it the 23rd most populated municipality in Denmark. Helsin ...
in Denmark. Huygens hoped to cross the
Øresund Øresund or Öresund (, ; ; ), commonly known in English as the Sound, is a strait which forms the Denmark–Sweden border, Danish–Swedish border, separating Zealand (Denmark) from Scania (Sweden). The strait has a length of ; its width var ...
to see Descartes in
Stockholm Stockholm (; ) is the Capital city, capital and List of urban areas in Sweden by population, most populous city of Sweden, as well as the List of urban areas in the Nordic countries, largest urban area in the Nordic countries. Approximately ...
but was prevented due to Descartes' death in the interim. Although his father Constantijn had wished his son Christiaan to be a diplomat, circumstances kept him from becoming so. The
First Stadtholderless Period The First Stadtholderless Period (1650–72; ) was the period in the history of the Dutch Republic in which the office of Stadtholder was vacant in five of the seven Dutch provinces (the provinces of Friesland and Groningen (province), Groningen, ...
that began in 1650 meant that the House of Orange was no longer in power, removing Constantijn's influence. Further, he realized that his son had no interest in such a career.Bunge et al. (2003), ''Dictionary of Seventeenth and Eighteenth-Century Dutch Philosophers,'' p. 469.


Early correspondence

Huygens generally wrote in French or Latin. In 1646, while still a college student at Leiden, he began a correspondence with his father's friend,
Marin Mersenne Marin Mersenne, OM (also known as Marinus Mersennus or ''le Père'' Mersenne; ; 8 September 1588 – 1 September 1648) was a French polymath whose works touched a wide variety of fields. He is perhaps best known today among mathematicians for ...
, who died soon afterwards in 1648. Mersenne wrote to Constantijn on his son's talent for mathematics, and flatteringly compared him to Archimedes on 3 January 1647. The letters show Huygens's early interest in mathematics. In October 1646 there is the
suspension bridge A suspension bridge is a type of bridge in which the deck (bridge), deck is hung below suspension wire rope, cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridg ...
and the demonstration that a hanging chain is not a
parabola In mathematics, a parabola is a plane curve which is Reflection symmetry, mirror-symmetrical and is approximately U-shaped. It fits several superficially different Mathematics, mathematical descriptions, which can all be proved to define exactl ...
, as Galileo thought. Huygens would later label that curve the ''catenaria'' (
catenary In physics and geometry, a catenary ( , ) is the curve that an idealized hanging chain or wire rope, cable assumes under its own weight when supported only at its ends in a uniform gravitational field. The catenary curve has a U-like shape, ...
) in 1690 while corresponding with
Gottfried Leibniz Gottfried Wilhelm Leibniz (or Leibnitz; – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat who is credited, alongside Isaac Newton, Sir Isaac Newton, with the creation of calculus in ad ...
. In the next two years (1647–48), Huygens's letters to Mersenne covered various topics, including a mathematical proof of the law of free fall, the claim by
Grégoire de Saint-Vincent Grégoire de Saint-Vincent () - in Latin : Gregorius a Sancto Vincentio, in Dutch : Gregorius van St-Vincent - (8 September 1584 Bruges – 5 June 1667 Ghent) was a Flemish Jesuit and mathematician. He is remembered for his work on quadrature of ...
of circle quadrature, which Huygens showed to be wrong, the rectification of the ellipse, projectiles, and the
vibrating string A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone. Vibrati ...
. Some of Mersenne's concerns at the time, such as the
cycloid In geometry, a cycloid is the curve traced by a point on a circle as it Rolling, rolls along a Line (geometry), straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette (curve), roulette, a curve g ...
(he sent Huygens
Torricelli Torricelli may refer to: People with the surname * Evangelista Torricelli (1608–1647), Italian physicist and mathematician * Robert Torricelli (born 1951), United States politician * Moreno Torricelli (born 1970), Italian football player * Gi ...
's treatise on the curve), the centre of oscillation, and the
gravitational constant The gravitational constant is an empirical physical constant involved in the calculation of gravitational effects in Sir Isaac Newton's law of universal gravitation and in Albert Einstein's general relativity, theory of general relativity. It ...
, were matters Huygens only took seriously later in the 17th century. Mersenne had also written on musical theory. Huygens preferred
meantone temperament Meantone temperaments are musical temperaments; that is, a variety of Musical tuning#Tuning systems, tuning systems constructed, similarly to Pythagorean tuning, as a sequence of equal fifths, both rising and descending, scaled to remain within th ...
; he innovated in
31 equal temperament In music, 31 equal temperament, which can also be abbreviated (31 tone ) or (equal division of the octave), also known as tricesimoprimal, is the tempered scale derived by dividing the octave into 31 equally-proportioned steps (e ...
(which was not itself a new idea but known to
Francisco de Salinas Francisco de Salinas (1513, Burgos – 1590, Salamanca) was a Spanish music theorist and organist, noted as among the first to describe meantone temperament in mathematically precise terms, and one of the first (along with Guillaume Costeley) to ...
), using logarithms to investigate it further and show its close relation to the meantone system. In 1654, Huygens returned to his father's house in The Hague and was able to devote himself entirely to research. The family had another house, not far away at
Hofwijck Hofwijck (; or Vitaulium in Latin) is a mansion built for 17th-century politician Constantijn Huygens. It is located in Voorburg on the Vliet canal from The Hague to Leiden. The formal address of the cultural heritage is 2 Westeinde, Voorburg, ...
, and he spent time there during the summer. Despite being very active, his scholarly life did not allow him to escape bouts of depression. Subsequently, Huygens developed a broad range of correspondents, though with some difficulty after 1648 due to the five-year ''
Fronde The Fronde () was a series of civil wars in the Kingdom of France between 1648 and 1653, occurring in the midst of the Franco-Spanish War, which had begun in 1635. The government of the young King Louis XIV confronted the combined opposition ...
'' in France. Visiting Paris in 1655, Huygens called on Ismael Boulliau to introduce himself, who took him to see
Claude Mylon Claude Mylon (1618–1660) was a French mathematician and member of the Académie Parisienne and the Académie des Sciences The French Academy of Sciences (, ) is a learned society, founded in 1666 by Louis XIV at the suggestion of Jea ...
. The Parisian group of savants that had gathered around Mersenne held together into the 1650s, and Mylon, who had assumed the secretarial role, took some trouble to keep Huygens in touch. Through Pierre de Carcavi Huygens corresponded in 1656 with Pierre de Fermat, whom he admired greatly. The experience was bittersweet and somewhat puzzling since it became clear that Fermat had dropped out of the research mainstream, and his priority claims could probably not be made good in some cases. Besides, Huygens was looking by then to apply mathematics to physics, while Fermat's concerns ran to purer topics.


Scientific debut

Like some of his contemporaries, Huygens was often slow to commit his results and discoveries to print, preferring to disseminate his work through letters instead. In his early days, his mentor Frans van Schooten provided technical feedback and was cautious for the sake of his reputation. Between 1651 and 1657, Huygens published a number of works that showed his talent for mathematics and his mastery of classical and
analytical geometry Analytic or analytical may refer to: Chemistry * Analytical chemistry, the analysis of material samples to learn their chemical composition and structure * Analytical technique, a method that is used to determine the concentration of a chemica ...
, increasing his reach and reputation among mathematicians. Around the same time, Huygens began to question Descartes's laws of
collision In physics, a collision is any event in which two or more bodies exert forces on each other in a relatively short time. Although the most common use of the word ''collision'' refers to incidents in which two or more objects collide with great for ...
, which were largely wrong, deriving the correct laws algebraically and later by way of geometry. He showed that, for any system of bodies, the
centre of gravity In physics, the center of mass of a distribution of mass in space (sometimes referred to as the barycenter or balance point) is the unique point at any given time where the weighted relative position of the distributed mass sums to zero. For a ...
of the system remains the same in velocity and direction, which Huygens called the conservation of "quantity of movement". While others at the time were studying impact, Huygens's theory of collisions was more general. These results became the main reference point and the focus for further debates through correspondence and in a short article in ''
Journal des Sçavans The (later renamed and then , ), established by Denis de Sallo, is the earliest academic journal published in Europe. It is thought to be the earliest published scientific journal. It currently focuses on European history and premodern literatu ...
'' but would remain unknown to a larger audience until the publication of ''De Motu Corporum ex Percussione'' (''Concerning the motion of colliding bodies'') in 1703. In addition to his mathematical and mechanical works, Huygens made important scientific discoveries: he was the first to identify
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
as one of
Saturn's Saturn is the sixth planet from the Sun and the second largest in the Solar System, after Jupiter. It is a gas giant, with an average radius of about 9 times that of Earth. It has an eighth the average density of Earth, but is over 95 times ...
moons in 1655, invented the pendulum clock in 1657, and explained Saturn's strange appearance as due to a
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
in 1659; all these discoveries brought him fame across Europe. On 3 May 1661, Huygens, together with astronomer
Thomas Streete Thomas Street (also spelled Streete) (1621–1689) was an English astronomer, known for his writings on celestial motions. He has sometimes been confused with Thomas Street the judge, who lived from 1626 to 1696. The crater Street on the Moon is ...
and Richard Reeve, observed the planet Mercury transit over the Sun using Reeve's telescope in London. Streete then debated the published record of
Hevelius Johannes Hevelius Some sources refer to Hevelius as Polish: * * * * * * * Some sources refer to Hevelius as German: * * * * *of the Royal Society * (in German also known as ''Hevel''; ; – 28 January 1687) was a councillor and mayor of Danz ...
, a controversy mediated by
Henry Oldenburg Henry Oldenburg (also Henry Oldenbourg) (c. 1618 as Heinrich Oldenburg – 5 September 1677) was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the foremos ...
. Huygens passed to Hevelius a manuscript of
Jeremiah Horrocks Jeremiah Horrocks (16183 January 1641), sometimes given as Jeremiah Horrox (the Latinised version that he used on the Emmanuel College register and in his Latin manuscripts), – See footnote 1 was an English astronomer. He was the first perso ...
on the transit of Venus in 1639, printed for the first time in 1662. In that same year,
Sir Robert Moray Sir Robert Moray (alternative spellings: Murrey, Murray) FRS (1608 or 1609 – 4 July 1673) was a Scottish soldier, statesman, diplomat, judge, spy, and natural philosopher. He was well known to Charles I and Charles II, and to the French ...
sent Huygens
John Graunt John Graunt (24 April 1620 – 18 April 1674) has been regarded as the founder of demography. Graunt was one of the first demographers, and perhaps the first epidemiologist, though by profession he was a haberdasher. He was bankrupted later in ...
's
life table In actuarial science and demography, a life table (also called a mortality table or actuarial table) is a table which shows, for each age, the probability that a person of that age will die before their next birthday ("probability of death"). In ...
, and shortly after Huygens and his brother Lodewijk dabbled on
life expectancy Human life expectancy is a statistical measure of the estimate of the average remaining years of life at a given age. The most commonly used measure is ''life expectancy at birth'' (LEB, or in demographic notation ''e''0, where '' ...
. Huygens eventually created the first graph of a continuous distribution function under the assumption of a uniform
death rate Mortality rate, or death rate, is a measure of the number of deaths (in general, or due to a specific cause) in a particular population, scaled to the size of that population, per unit of time. Mortality rate is typically expressed in units of d ...
, and used it to solve problems in joint annuities. Contemporaneously, Huygens, who played the
harpsichord A harpsichord is a musical instrument played by means of a musical keyboard, keyboard. Depressing a key raises its back end within the instrument, which in turn raises a mechanism with a small plectrum made from quill or plastic that plucks one ...
, took an interest in Simon Stevin's theories on music; however, he showed very little concern to publish his theories on
consonance In music, consonance and dissonance are categorizations of simultaneous or successive sounds. Within the Western tradition, some listeners associate consonance with sweetness, pleasantness, and acceptability, and dissonance with harshness, unple ...
, some of which were lost for centuries. For his contributions to science, the
Royal Society The Royal Society, formally The Royal Society of London for Improving Natural Knowledge, is a learned society and the United Kingdom's national academy of sciences. The society fulfils a number of roles: promoting science and its benefits, re ...
of London elected Huygens a Fellow in 1663, making him its first foreign member when he was just 34 years old.


France

The
Montmor Academy Henri Louis Habert de Montmort ( 1600, Paris – 21 January 1679, Paris) was a French scholar and man of letters. Biography Cousin to Philippe Habert and Germain Habert, he became conseiller du roi aged 25, then in 1632 rose to become maître d ...
, started in the mid-1650s, was the form the old Mersenne circle took after his death. Huygens took part in its debates and supported those favouring experimental demonstration as a check on amateurish attitudes. He visited Paris a third time in 1663; when the Montmor Academy closed down the next year, Huygens advocated for a more Baconian program in science. Two years later, in 1666, he moved to Paris on an invitation to fill a leadership position at
King Louis XIV LouisXIV (Louis-Dieudonné; 5 September 16381 September 1715), also known as Louis the Great () or the Sun King (), was King of France from 1643 until his death in 1715. His verified reign of 72 years and 110 days is the longest of any monar ...
's new French
Académie des sciences The French Academy of Sciences (, ) is a learned society, founded in 1666 by Louis XIV at the suggestion of Jean-Baptiste Colbert, to encourage and protect the spirit of French Scientific method, scientific research. It was at the forefron ...
. While at the Académie in Paris, Huygens had an important patron and correspondent in
Jean-Baptiste Colbert Jean-Baptiste Colbert (; 29 August 1619 – 6 September 1683) was a French statesman who served as First Minister of State from 1661 until his death in 1683 under the rule of King Louis XIV. His lasting impact on the organization of the countr ...
, First Minister to Louis XIV. His relationship with the French Académie was not always easy, and in 1670 Huygens, seriously ill, chose Francis Vernon to carry out a donation of his papers to the Royal Society in London should he die. However, the aftermath of the
Franco-Dutch War The Franco-Dutch War, 1672 to 1678, was primarily fought by Kingdom of France, France and the Dutch Republic, with both sides backed at different times by a variety of allies. Related conflicts include the 1672 to 1674 Third Anglo-Dutch War and ...
(1672–78), and particularly England's role in it, may have damaged his later relationship with the Royal Society.
Robert Hooke Robert Hooke (; 18 July 16353 March 1703) was an English polymath who was active as a physicist ("natural philosopher"), astronomer, geologist, meteorologist, and architect. He is credited as one of the first scientists to investigate living ...
, as a Royal Society representative, lacked the finesse to handle the situation in 1673. The physicist and inventor
Denis Papin Denis Papin FRS (; 22 August 1647 – 26 August 1713) was a French physicist, mathematician and inventor, best known for his pioneering invention of the steam digester, the forerunner of the pressure cooker, the steam engine, the centrifug ...
was an assistant to Huygens from 1671. One of their projects, which did not bear fruit directly, was the
gunpowder engine A gunpowder engine, also known as an explosion engine or Huygens' engine, is a type of internal combustion engine using gunpowder as its fuel. The concept was first explored during the 1600s, most notably by famous Dutch polymath Christiaan Huygens ...
, a precursor of the
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
that used
gunpowder Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, charcoal (which is mostly carbon), and potassium nitrate, potassium ni ...
as its fuel. Huygens made further astronomical observations at the Académie using the
observatory An observatory is a location used for observing terrestrial, marine, or celestial events. Astronomy, climatology/meteorology, geophysics, oceanography and volcanology are examples of disciplines for which observatories have been constructed. Th ...
recently completed in 1672. He introduced
Nicolaas Hartsoeker Nicolaas Hartsoeker (26 March 1656 – 10 December 1725) was a Dutch mathematician and physicist who invented the screw-barrel simple microscope . Biography He was the son of Anna van der Meij and Christiaan Hartsoeker (1626–1683), a Remonst ...
to French scientists such as
Nicolas Malebranche Nicolas Malebranche ( ; ; 6 August 1638 – 13 October 1715) was a French Oratorian Catholic priest and rationalist philosopher. In his works, he sought to synthesise the thought of St. Augustine and Descartes, in order to demonstrate the ...
and
Giovanni Cassini Giovanni Domenico Cassini (8 June 1625 – 14 September 1712) was an Italian-French mathematician, astronomer, astrologer and engineer. Cassini was born in Perinaldo, near Imperia, at that time in the County of Nice, part of the Savoyard sta ...
in 1678. The young diplomat Leibniz met Huygens while visiting Paris in 1672 on a vain mission to meet the French Foreign Minister Arnauld de Pomponne. Leibniz was working on a
calculating machine A mechanical calculator, or calculating machine, is a mechanical device used to perform the basic operations of arithmetic automatically, or a simulation like an analog computer or a slide rule. Most mechanical calculators were comparable in s ...
at the time and, after a short visit to London in early 1673, he was tutored in mathematics by Huygens until 1676. An extensive correspondence ensued over the years, in which Huygens showed at first reluctance to accept the advantages of Leibniz's
infinitesimal calculus Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of ...
.


Final years

Huygens moved back to The Hague in 1681 after suffering another bout of serious depressive illness. In 1684, he published ''Astroscopia Compendiaria'' on his new tubeless
aerial telescope An aerial telescope is a type of very long focal length refracting telescope, built in the second half of the 17th century, that did not use a tube. Instead, the objective was mounted on a pole, tree, tower, building or other structure on a swive ...
. He attempted to return to France in 1685 but the
revocation of the Edict of Nantes The Edict of Fontainebleau (18 October 1685, published 22 October 1685) was an edict issued by French King Louis XIV and is also known as the Revocation of the Edict of Nantes. The Edict of Nantes (1598) had granted Huguenots the right to pra ...
precluded this move. His father died in 1687, and he inherited Hofwijck, which he made his home the following year. On his third visit to England, Huygens met Newton in person on 12 June 1689. They spoke about
Iceland spar Iceland spar, formerly called Iceland crystal ( , ) and also called optical calcite, is a transparent variety of calcite, or crystallized calcium carbonate, originally brought from Iceland, and used in demonstrating the polarization of light. For ...
, and subsequently corresponded about resisted motion. Huygens returned to mathematical topics in his last years and observed the acoustical phenomenon now known as
flanging Flanging is an audio signal processing, audio effect produced by mixing two identical audio signal, signals together, one signal delayed by a small and (usually) gradually changing period, usually smaller than 20 milliseconds. This produces a ...
in 1693. Two years later, on 8 July 1695, Huygens died in The Hague and was buried, like his father before him, in an unmarked grave at the Grote Kerk. Huygens never married.


Mathematics

Huygens first became internationally known for his work in mathematics, publishing a number of important results that drew the attention of many European geometers.Bos, H. J. M. (2004). Huygens and mathematics. ''Titan: From discovery to encounter'', pp. 67–8

Huygens's preferred method in his published works was that of Archimedes, though he made use of Descartes's analytic geometry and Fermat's Adequality, infinitesimal techniques more extensively in his private notebooks.


Published works


''Theoremata de Quadratura''

Huygens's first publication was ''Theoremata de Quadratura Hyperboles, Ellipsis et Circuli'' (''Theorems on the quadrature of the hyperbola, ellipse, and circle''), published by the Elzeviers in
Leiden Leiden ( ; ; in English language, English and Archaism, archaic Dutch language, Dutch also Leyden) is a List of cities in the Netherlands by province, city and List of municipalities of the Netherlands, municipality in the Provinces of the Nethe ...
in 1651. The first part of the work contained theorems for computing the areas of hyperbolas, ellipses, and circles that paralleled Archimedes's work on conic sections, particularly his ''
Quadrature of the Parabola ''Quadrature of the Parabola'' () is a treatise on geometry, written by Archimedes in the 3rd century BC and addressed to his Alexandrian acquaintance Dositheus. It contains 24 propositions regarding parabolas, culminating in two proofs showing t ...
''. The second part included a refutation to Grégoire de Saint-Vincent's claims on circle quadrature, which he had discussed with Mersenne earlier. Huygens demonstrated that the centre of gravity of a segment of any
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
,
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
, or
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
was directly related to the area of that segment. He was then able to show the relationships between triangles inscribed in conic sections and the centre of gravity for those sections. By generalizing these theorems to cover all conic sections, Huygens extended classical methods to generate new results. Quadrature and rectification were live issues in the 1650s and, through Mylon, Huygens participated in the controversy surrounding
Thomas Hobbes Thomas Hobbes ( ; 5 April 1588 – 4 December 1679) was an English philosopher, best known for his 1651 book ''Leviathan (Hobbes book), Leviathan'', in which he expounds an influential formulation of social contract theory. He is considered t ...
. Persisting in highlighting his mathematical contributions, he made an international reputation.


''De Circuli Magnitudine Inventa''

Huygens's next publication was ''De Circuli Magnitudine Inventa'' (''New findings on the magnitude of the circle''), published in 1654. In this work, Huygens was able to narrow the gap between the circumscribed and inscribed polygons found in Archimedes's ''Measurement of the Circle'', showing that the ratio of the circumference to its diameter or pi () must lie in the first third of that interval. Using a technique equivalent to
Richardson extrapolation In numerical analysis, Richardson extrapolation is a Series acceleration, sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value A^\ast = \lim_ A(h). In essence, given the value of A(h) for se ...
, Huygens was able to shorten the inequalities used in Archimedes's method; in this case, by using the centre of the gravity of a segment of a parabola, he was able to approximate the centre of gravity of a segment of a circle, resulting in a faster and accurate approximation of the circle quadrature. From these theorems, Huygens obtained two set of values for : the first between 3.1415926 and 3.1415927, and the second between 3.1415926533 and 3.1415926538. Huygens also showed that, in the case of the
hyperbola In mathematics, a hyperbola is a type of smooth function, smooth plane curve, curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected component ( ...
, the same approximation with parabolic segments produces a quick and simple method to calculate
logarithm In mathematics, the logarithm of a number is the exponent by which another fixed value, the base, must be raised to produce that number. For example, the logarithm of to base is , because is to the rd power: . More generally, if , the ...
s. He appended a collection of solutions to classical problems at the end of the work under the title ''Illustrium Quorundam Problematum Constructiones'' (''Construction of some illustrious problems'').


''De Ratiociniis in Ludo Aleae''

Huygens became interested in
games of chance A game of chance is in contrast with a game of skill. It is a game whose outcome is strongly influenced by some randomizing device. Common devices used include dice, spinning tops, playing cards, roulette wheels, numbered balls, or in the case ...
after he visited Paris in 1655 and encountered the work of Fermat,
Blaise Pascal Blaise Pascal (19June 162319August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. Pascal was a child prodigy who was educated by his father, a tax collector in Rouen. His earliest ...
and
Girard Desargues Girard Desargues (; 21 February 1591September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues on the Moon are named i ...
years earlier. He eventually published what was, at the time, the most coherent presentation of a mathematical approach to games of chance in ''De Ratiociniis in Ludo Aleae'' (''On reasoning in games of chance''). Frans van Schooten translated the original Dutch manuscript into Latin and published it in his ''Exercitationum Mathematicarum'' (1657). The work contains early
game-theoretic Game theory is the study of mathematical models of strategic interactions. It has applications in many fields of social science, and is used extensively in economics, logic, systems science and computer science. Initially, game theory addressed ...
ideas and deals in particular with the
problem of points The problem of points, also called the problem of division of the stakes, is a classical problem in probability theory. One of the famous problems that motivated the beginnings of modern probability theory in the 17th century, it led Blaise Pascal ...
. Huygens took from Pascal the concepts of a "fair game" and equitable contract (i.e., equal division when the chances are equal), and extended the argument to set up a non-standard theory of expected values. His success in applying algebra to the realm of chance, which hitherto seemed inaccessible to mathematicians, demonstrated the power of combining Euclidean synthetic proofs with the symbolic reasoning found in the works of Viète and Descartes. Huygens included five challenging problems at the end of the book that became the standard test for anyone wishing to display their mathematical skill in games of chance for the next sixty years. People who worked on these problems included
Abraham de Moivre Abraham de Moivre FRS (; 26 May 166727 November 1754) was a French mathematician known for de Moivre's formula, a formula that links complex numbers and trigonometry, and for his work on the normal distribution and probability theory. He move ...
, Jacob Bernoulli, Johannes Hudde,
Baruch Spinoza Baruch (de) Spinoza (24 November 163221 February 1677), also known under his Latinized pen name Benedictus de Spinoza, was a philosopher of Portuguese-Jewish origin, who was born in the Dutch Republic. A forerunner of the Age of Enlightenmen ...
, and Leibniz.


Unpublished work

Huygens had earlier completed a manuscript in the manner of Archimedes's ''
On Floating Bodies ''On Floating Bodies'' () is a work, originally in two books, by Archimedes, one of the most important mathematicians, physicists, and engineers of antiquity. Thought to have been written towards the end of Archimedes' life, ''On Floating Bodies ...
'' entitled ''De Iis quae Liquido Supernatant'' (''About parts floating above liquids''). It was written around 1650 and was made up of three books. Although he sent the completed work to Frans van Schooten for feedback, in the end Huygens chose not to publish it, and at one point suggested it be burned. Some of the results found here were not rediscovered until the eighteenth and nineteenth centuries. Huygens first re-derives Archimedes's solutions for the stability of the sphere and the paraboloid by a clever application of Torricelli's principle (i.e., that bodies in a system move only if their centre of gravity descends). He then proves the general theorem that, for a floating body in equilibrium, the distance between its centre of gravity and its submerged portion is at a minimum. Huygens uses this theorem to arrive at original solutions for the stability of floating
cone In geometry, a cone is a three-dimensional figure that tapers smoothly from a flat base (typically a circle) to a point not contained in the base, called the '' apex'' or '' vertex''. A cone is formed by a set of line segments, half-lines ...
s,
parallelepiped In geometry, a parallelepiped is a three-dimensional figure formed by six parallelograms (the term ''rhomboid'' is also sometimes used with this meaning). By analogy, it relates to a parallelogram just as a cube relates to a square. Three equiva ...
s, and
cylinder A cylinder () has traditionally been a three-dimensional solid, one of the most basic of curvilinear geometric shapes. In elementary geometry, it is considered a prism with a circle as its base. A cylinder may also be defined as an infinite ...
s, in some cases through a full cycle of rotation. His approach was thus equivalent to the principle of
virtual work In mechanics, virtual work arises in the application of the '' principle of least action'' to the study of forces and movement of a mechanical system. The work of a force acting on a particle as it moves along a displacement is different fo ...
. Huygens was also the first to recognize that, for these homogeneous solids, their specific weight and their
aspect ratio The aspect ratio of a geometry, geometric shape is the ratio of its sizes in different dimensions. For example, the aspect ratio of a rectangle is the ratio of its longer side to its shorter side—the ratio of width to height, when the rectangl ...
are the essentials parameters of
hydrostatic stability Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged. Stability calculations focus on centers of gravity, centers of buoyancy, th ...
.


Natural philosophy

Huygens was the leading European natural philosopher between Descartes and Newton. However, unlike many of his contemporaries, Huygens had no taste for grand theoretical or philosophical systems and generally avoided dealing with metaphysical issues (if pressed, he adhered to the
Cartesian philosophy Cartesianism is the philosophical and scientific system of René Descartes and its subsequent development by other seventeenth century thinkers, most notably François Poullain de la Barre, Nicolas Malebranche and Baruch Spinoza. Descartes is of ...
of his time). Instead, Huygens excelled in extending the work of his predecessors, such as Galileo, to derive solutions to unsolved physical problems that were amenable to mathematical analysis. In particular, he sought explanations that relied on contact between bodies and avoided
action at a distance Action at a distance is the concept in physics that an object's motion (physics), motion can be affected by another object without the two being in Contact mechanics, physical contact; that is, it is the concept of the non-local interaction of ob ...
. In common with
Robert Boyle Robert Boyle (; 25 January 1627 – 31 December 1691) was an Anglo-Irish natural philosopher, chemist, physicist, Alchemy, alchemist and inventor. Boyle is largely regarded today as the first modern chemist, and therefore one of the foun ...
and
Jacques Rohault Jacques Rohault (; 1618 – 27 December 1672) was a French philosopher, physicist and mathematician, and a follower of Cartesianism. Life Rohault was born in Amiens, the son of a wealthy wine merchant, and educated in Paris. Having grown up with ...
, Huygens advocated an experimentally oriented, mechanical natural philosophy during his Paris years. Already in his first visit to England in 1661, Huygens had learnt about Boyle's
air pump An air pump is a pump for pushing air. Examples include a bicycle pump, pumps that are used to aerate an aquarium or a pond via an airstone; a gas compressor used to power a pneumatic tool, air horn or pipe organ; a bellows used to encoura ...
experiments during a meeting at
Gresham College Gresham College is an institution of higher learning located at Barnard's Inn Hall off Holborn in Central London, England that does not accept students or award degrees. It was founded in 1597 under the Will (law), will of Sir Thomas Gresham, ...
. Shortly afterwards, he reevaluated Boyle's experimental design and developed a series of experiments meant to test a new hypothesis. It proved a yearslong process that brought to the surface a number of experimental and theoretical issues, and which ended around the time he became a Fellow of the Royal Society. Despite the
replication of results Reproducibility, closely related to replicability and repeatability, is a major principle underpinning the scientific method. For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or ...
of Boyle's experiments trailing off messily, Huygens came to accept Boyle's view of the void against the Cartesian denial of it. Newton's influence on
John Locke John Locke (; 29 August 1632 (Old Style and New Style dates, O.S.) – 28 October 1704 (Old Style and New Style dates, O.S.)) was an English philosopher and physician, widely regarded as one of the most influential of the Enlightenment thi ...
was mediated by Huygens, who assured Locke that Newton's mathematics was sound, leading to Locke's acceptance of a corpuscular-mechanical physics.


Laws of motion, impact, and gravitation


Elastic collisions

The general approach of the mechanical philosophers was to postulate theories of the kind now called "contact action." Huygens adopted this method but not without seeing its limitations, while Leibniz, his student in Paris, later abandoned it. Understanding the universe this way made the theory of collisions central to physics, as only explanations that involved matter in motion could be truly intelligible. While Huygens was influenced by the Cartesian approach, he was less doctrinaire. He studied
elastic collision In physics, an elastic collision occurs between two physical objects in which the total kinetic energy of the two bodies remains the same. In an ideal, perfectly elastic collision, there is no net loss of kinetic energy into other forms such a ...
s in the 1650s but delayed publication for over a decade.Bunge et al. (2003), ''Dictionary of Seventeenth and Eighteenth-Century Dutch Philosophers,'' p. 470. Huygens concluded quite early that Descartes's laws for elastic collisions were largely wrong, and he formulated the correct laws, including the conservation of the product of mass times the square of the speed for hard bodies, and the conservation of quantity of motion in one direction for all bodies. An important step was his recognition of the
Galilean invariance Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his ''Dialogue Concerning the Two Chief World Systems'' using t ...
of the problems. Huygens had worked out the laws of collision from 1652 to 1656 in a manuscript entitled ''De Motu Corporum ex Percussione'', though his results took many years to be circulated. In 1661, he passed them on in person to William Brouncker and
Christopher Wren Sir Christopher Wren FRS (; – ) was an English architect, astronomer, mathematician and physicist who was one of the most highly acclaimed architects in the history of England. Known for his work in the English Baroque style, he was ac ...
in London. What Spinoza wrote to
Henry Oldenburg Henry Oldenburg (also Henry Oldenbourg) (c. 1618 as Heinrich Oldenburg – 5 September 1677) was a German theologian, diplomat, and natural philosopher, known as one of the creators of modern scientific peer review. He was one of the foremos ...
about them in 1666, during the
Second Anglo-Dutch War The Second Anglo-Dutch War, began on 4 March 1665, and concluded with the signing of the Treaty of Breda (1667), Treaty of Breda on 31 July 1667. It was one in a series of Anglo-Dutch Wars, naval wars between Kingdom of England, England and the D ...
, was guarded. The war ended in 1667, and Huygens announced his results to the Royal Society in 1668. He later published them in the ''Journal des Sçavans'' in 1669.


Centrifugal force

In 1659 Huygens found the constant of
gravitational acceleration In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag (physics), drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodi ...
and stated what is now known as the second of
Newton's laws of motion Newton's laws of motion are three physical laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows: # A body re ...
in quadratic form. He derived geometrically the now standard formula for the
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
, exerted on an object when viewed in a rotating
frame of reference In physics and astronomy, a frame of reference (or reference frame) is an abstract coordinate system, whose origin (mathematics), origin, orientation (geometry), orientation, and scale (geometry), scale have been specified in physical space. It ...
, for instance when driving around a curve. In modern notation: :F_= with ''m'' the
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
of the object, ''ω'' the
angular velocity In physics, angular velocity (symbol or \vec, the lowercase Greek letter omega), also known as the angular frequency vector,(UP1) is a pseudovector representation of how the angular position or orientation of an object changes with time, i ...
, and ''r'' the
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
. Huygens collected his results in a treatise under the title ''De vi Centrifuga'', unpublished until 1703, where the kinematics of free fall were used to produce the first generalized conception of
force In physics, a force is an influence that can cause an Physical object, object to change its velocity unless counterbalanced by other forces. In mechanics, force makes ideas like 'pushing' or 'pulling' mathematically precise. Because the Magnitu ...
prior to Newton.


Gravitation

The general idea for the centrifugal force, however, was published in 1673 and was a significant step in studying orbits in astronomy. It enabled the transition from
Kepler's third law In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler in 1609 (except the third law, which was fully published in 1619), describe the orbits of planets around the Sun. These laws replaced circular orbits and epicycles in ...
of planetary motion to the
inverse square law In science, an inverse-square law is any scientific law stating that the observed "intensity" of a specified physical quantity is inversely proportional to the square of the distance from the source of that physical quantity. The fundamental cau ...
of gravitation. Yet, the interpretation of Newton's work on gravitation by Huygens differed from that of Newtonians such as
Roger Cotes Roger Cotes (10 July 1682 – 5 June 1716) was an English mathematician, known for working closely with Isaac Newton by proofreading the second edition of his famous book, the '' Principia'', before publication. He also devised the quadrature ...
: he did not insist on the ''a priori'' attitude of Descartes, but neither would he accept aspects of gravitational attractions that were not attributable in principle to contact between particles. The approach used by Huygens also missed some central notions of mathematical physics, which were not lost on others. In his work on pendulums Huygens came very close to the theory of
simple harmonic motion In mechanics and physics, simple harmonic motion (sometimes abbreviated as ) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from ...
; the topic, however, was covered fully for the first time by Newton in Book II of the ''
Principia Mathematica The ''Principia Mathematica'' (often abbreviated ''PM'') is a three-volume work on the foundations of mathematics written by the mathematician–philosophers Alfred North Whitehead and Bertrand Russell and published in 1910, 1912, and 1 ...
'' (1687). In 1678 Leibniz picked out of Huygens's work on collisions the idea of
conservation law In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. Exact conservation laws include conservation of mass-energy, conservation of linear momen ...
that Huygens had left implicit.


Horology


Pendulum clock

In 1657, inspired by earlier research into pendulums as regulating mechanisms, Huygens invented the pendulum clock, which was a breakthrough in timekeeping and became the most accurate timekeeper for almost 300 years until the 1930s. The pendulum clock was much more accurate than the existing
verge and foliot The verge (or crown wheel) escapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were us ...
clocks and was immediately popular, quickly spreading over Europe. Clocks prior to this would lose about 15 minutes per day, whereas Huygens's clock would lose about 15 seconds per day. Although Huygens patented and contracted the construction of his clock designs to
Salomon Coster Salomon Coster (c. 1620–1659) was a Dutch clockmaker of the Hague, who in 1657 was the first to make a pendulum clock, which had been invented by Dutch mathematician Christiaan Huygens (1629-1695). Coster died a sudden death in 1659. Christ ...
in The Hague, he did not make much money from his invention.
Pierre Séguier Pierre Séguier (; 28 May 1588 – 28 January 1672) was a French statesman who was the chancellor of France from 1635. Biography Early years Séguier was born in Paris to a prominent legal family originating in Quercy. His grandfather, Pierre S ...
refused him any French rights, while Simon Douw in
Rotterdam Rotterdam ( , ; ; ) is the second-largest List of cities in the Netherlands by province, city in the Netherlands after the national capital of Amsterdam. It is in the Provinces of the Netherlands, province of South Holland, part of the North S ...
and
Ahasuerus Fromanteel Ahasuerus Fromanteel (circa 25 February 1607 – circa 31 January 1693) was a clockmaker, the first maker of pendulum clocks in Britain. Life and work Fromanteel was baptised in Norwich on 25 February 1607. He was the first of five children bor ...
in London copied his design in 1658. The oldest known Huygens-style pendulum clock is dated 1657 and can be seen at the
Museum Boerhaave Rijksmuseum Boerhaave is a museum of the history of science and medicine, based in Leiden, Netherlands. The museum hosts a collection of historical scientific instruments from all disciplines, but mainly from medicine, physics, and astronomy. Th ...
in
Leiden Leiden ( ; ; in English language, English and Archaism, archaic Dutch language, Dutch also Leyden) is a List of cities in the Netherlands by province, city and List of municipalities of the Netherlands, municipality in the Provinces of the Nethe ...
.van den Ende, H., Hordijk, B., Kersing, V., & Memel, R. (2018)
''The invention of the pendulum clock: A collaboration on the real story.''
/ref> Part of the incentive for inventing the pendulum clock was to create an accurate
marine chronometer A marine chronometer is a precision timepiece that is carried on a ship and employed in the determination of the ship's position by celestial navigation. It is used to determine longitude by comparing Greenwich Mean Time (GMT), and the time at t ...
that could be used to find
longitude Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
by
celestial navigation Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface ...
during sea voyages. However, the clock proved unsuccessful as a marine timekeeper because the rocking motion of the ship disturbed the motion of the pendulum. In 1660, Lodewijk Huygens made a trial on a voyage to Spain, and reported that heavy weather made the clock useless. Alexander Bruce entered the field in 1662, and Huygens called in Sir Robert Moray and the Royal Society to mediate and preserve some of his rights. Trials continued into the 1660s, the best news coming from a Royal Navy captain Robert Holmes operating against the Dutch possessions in 1664.
Lisa Jardine Lisa Anne Jardine (née Bronowski; 12 April 1944 – 25 October 2015) was a British historian of the early modern period. From 1990 to 2011, she was Centenary Professor of Renaissance Studies and director of the Centre for Editing Lives and L ...
doubts that Holmes reported the results of the trial accurately, as
Samuel Pepys Samuel Pepys ( ; 23 February 1633 – 26 May 1703) was an English writer and Tories (British political party), Tory politician. He served as an official in the Navy Board and Member of Parliament (England), Member of Parliament, but is most r ...
expressed his doubts at the time. A trial for the French Academy on an expedition to
Cayenne Cayenne (; ; ) is the Prefectures in France, prefecture and capital city of French Guiana, an overseas region and Overseas department, department of France located in South America. The city stands on a former island at the mouth of the Caye ...
ended badly.
Jean Richer Jean Richer (1630–1696) was a French astronomer and assistant (''élève astronome'') at the French Academy of Sciences, under the direction of Giovanni Domenico Cassini. Between 1671 and 1673 he performed experiments and carried out celestial ...
suggested correction for the
figure of the Earth In geodesy, the figure of the Earth is the size and shape used to model planet Earth. The kind of figure depends on application, including the precision needed for the model. A spherical Earth is a well-known historical approximation that is ...
. By the time of the
Dutch East India Company The United East India Company ( ; VOC ), commonly known as the Dutch East India Company, was a chartered company, chartered trading company and one of the first joint-stock companies in the world. Established on 20 March 1602 by the States Ge ...
expedition of 1686 to the
Cape of Good Hope The Cape of Good Hope ( ) is a rocky headland on the Atlantic Ocean, Atlantic coast of the Cape Peninsula in South Africa. A List of common misconceptions#Geography, common misconception is that the Cape of Good Hope is the southern tip of Afri ...
, Huygens was able to supply the correction retrospectively.


''Horologium Oscillatorium''

Sixteen years after the invention of the pendulum clock, in 1673, Huygens published his major work on horology entitled '' Horologium Oscillatorium: Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae (The Pendulum Clock: or Geometrical demonstrations concerning the motion of pendula as applied to clocks''). It is the first modern work on mechanics where a physical problem is idealized by a set of parameters then analysed mathematically. Huygens's motivation came from the observation, made by Mersenne and others, that pendulums are not quite
isochronous A sequence of events is isochronous if the events occur regularly, or at equal time intervals. The term ''isochronous'' is used in several technical contexts, but usually refers to the primary subject maintaining a constant period or interval ( ...
: their period depends on their width of swing, with wide swings taking slightly longer than narrow swings. He tackled this problem by finding the curve down which a mass will slide under the influence of gravity in the same amount of time, regardless of its starting point; the so-called tautochrone problem. By geometrical methods which anticipated the
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
, Huygens showed it to be a
cycloid In geometry, a cycloid is the curve traced by a point on a circle as it Rolling, rolls along a Line (geometry), straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette (curve), roulette, a curve g ...
, rather than the circular arc of a pendulum's bob, and therefore that pendulums needed to move on a cycloid path in order to be isochronous. The mathematics necessary to solve this problem led Huygens to develop his theory of evolutes, which he presented in Part III of his ''Horologium Oscillatorium''. He also solved a problem posed by Mersenne earlier: how to calculate the period of a pendulum made of an arbitrarily-shaped swinging rigid body. This involved discovering the centre of oscillation and its reciprocal relationship with the pivot point. In the same work, he analysed the
conical pendulum A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot. Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a coni ...
, consisting of a weight on a cord moving in a circle, using the concept of centrifugal force. Huygens was the first to derive the formula for the
period Period may refer to: Common uses * Period (punctuation) * Era, a length or span of time *Menstruation, commonly referred to as a "period" Arts, entertainment, and media * Period (music), a concept in musical composition * Periodic sentence (o ...
of an ideal mathematical pendulum (with mass-less rod or cord and length much longer than its swing), in modern notation: :T = 2 \pi \sqrt with ''T'' the period, ''l'' the length of the pendulum and ''g'' the
gravitational acceleration In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag (physics), drag). This is the steady gain in speed caused exclusively by gravitational attraction. All bodi ...
. By his study of the oscillation period of compound pendulums Huygens made pivotal contributions to the development of the concept of
moment of inertia The moment of inertia, otherwise known as the mass moment of inertia, angular/rotational mass, second moment of mass, or most accurately, rotational inertia, of a rigid body is defined relatively to a rotational axis. It is the ratio between ...
.
Ernst Mach Ernst Waldfried Josef Wenzel Mach ( ; ; 18 February 1838 – 19 February 1916) was an Austrian physicist and philosopher, who contributed to the understanding of the physics of shock waves. The ratio of the speed of a flow or object to that of ...
, ''The Science of Mechanics'' (1919), e.g. pp. 143, 172, 187 https://archive.org/details/scienceofmechani005860mbp
Huygens also observed
coupled oscillation Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum a ...
s: two of his pendulum clocks mounted next to each other on the same support often became synchronized, swinging in opposite directions. He reported the results by letter to the Royal Society, and it is referred to as " an odd kind of sympathy" in the Society's minutes. This concept is now known as
entrainment Entrainment may refer to: * Air entrainment, the intentional creation of tiny air bubbles in concrete * Brainwave entrainment, the practice of entraining one's brainwaves to a desired frequency * Entrainment (biomusicology), the synchronization o ...
.


Balance spring watch

In 1675, while investigating the oscillating properties of the cycloid, Huygens was able to transform a cycloidal pendulum into a vibrating spring through a combination of geometry and higher mathematics. In the same year, Huygens designed a spiral
balance spring A balance spring, or hairspring, is a spring attached to the balance wheel in mechanical timepieces. It causes the balance wheel to oscillate with a resonant frequency when the timepiece is running, which controls the speed at which the wheels ...
and patented a
pocket watch A pocket watch is a watch that is made to be carried in a pocket, as opposed to a wristwatch, which is strapped to the wrist. They were the most common type of watch from their development in the 16th century until wristwatches became popula ...
. These watches are notable for lacking a
fusee Fusee or fusée may refer to: * Fusee (horology), a component of a clock * Flare, a pyrotechnic device sometimes called a Fusee * Fusee, an old word for "flintlock Flintlock is a general term for any firearm that uses a flint-striking lock (fi ...
for equalizing the mainspring torque. The implication is that Huygens thought his spiral spring would isochronize the balance in the same way that cycloid-shaped suspension curbs on his clocks would isochronize the pendulum. He later used spiral springs in more conventional watches, made for him by Thuret in Paris. Such springs are essential in modern watches with a detached
lever escapement The lever escapement, invented by the English clockmaker Thomas Mudge in 1754 (albeit first used in 1769), is a type of escapement that is used in almost all mechanical watches, as well as small mechanical non-pendulum clocks, alarm clocks, a ...
because they can be adjusted for
isochronism A sequence of events is isochronous if the events occur regularly, or at equal time intervals. The term ''isochronous'' is used in several technical contexts, but usually refers to the primary subject maintaining a constant period or interval ( ...
. Watches in Huygens's time, however, employed the very ineffective
verge escapement The verge (or crown wheel) escapement is the earliest known type of mechanical escapement, the mechanism in a mechanical clock that controls its rate by allowing the gear train to advance at regular intervals or 'ticks'. Verge escapements were us ...
, which interfered with the isochronal properties of any form of balance spring, spiral or otherwise. Huygens's design came around the same time as, though independently of, Robert Hooke's. Controversy over the priority of the balance spring persisted for centuries. In February 2006, a long-lost copy of Hooke's handwritten notes from several decades of Royal Society meetings was discovered in a cupboard in
Hampshire Hampshire (, ; abbreviated to Hants.) is a Ceremonial counties of England, ceremonial county in South East England. It is bordered by Berkshire to the north, Surrey and West Sussex to the east, the Isle of Wight across the Solent to the south, ...
, England, presumably tipping the evidence in Hooke's favour.


Optics


Dioptrics

Huygens had a long-term interest in the study of
light refraction In physics, refraction is the redirection of a wave as it passes from one medium to another. The redirection can be caused by the wave's change in speed or by a change in the medium. Refraction of light is the most commonly observed phenome ...
and lenses or
dioptrics Dioptrics is the branch of optics dealing with refraction, especially by lenses. In contrast, the branch dealing with mirrors is known as '' catoptrics''. Telescopes that create their image with an objective that is a convex lens ( refractors) a ...
.Bunge et al. (2003), ''Dictionary of Seventeenth and Eighteenth-Century Dutch Philosophers,'' p. 472. From 1652 date the first drafts of a Latin treatise on the theory of dioptrics, known as the ''Tractatus'', which contained a comprehensive and rigorous theory of the telescope. Huygens was one of the few to raise theoretical questions regarding the properties and working of the telescope, and almost the only one to direct his mathematical proficiency towards the actual instruments used in astronomy. Huygens repeatedly announced its publication to his colleagues but ultimately postponed it in favor of a much more comprehensive treatment, now under the name of the ''Dioptrica''. It consisted of three parts. The first part focused on the general principles of refraction, the second dealt with
spherical A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
and
chromatic aberration In optics, chromatic aberration (CA), also called chromatic distortion, color aberration, color fringing, or purple fringing, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the ...
, while the third covered all aspects of the construction of telescopes and microscopes. In contrast to Descartes' dioptrics which treated only ideal (elliptical and hyperbolical) lenses, Huygens dealt exclusively with spherical lenses, which were the only kind that could really be made and incorporated in devices such as microscopes and telescopes. Huygens also worked out practical ways to minimize the effects of spherical and chromatic aberration, such as long focal distances for the objective of a telescope, internal stops to reduce the aperture, and a new kind of ocular known as the
Huygenian eyepiece An eyepiece, or ocular lens, is a type of lens that is attached to a variety of optical devices such as telescopes and microscopes. It is named because it is usually the lens that is closest to the eye when someone looks through an optical devi ...
. The ''Dioptrica'' was never published in Huygens’s lifetime and only appeared in press in 1703, when most of its contents were already familiar to the scientific world.


Lenses

Together with his brother Constantijn, Huygens began grinding his own lenses in 1655 in an effort to improve telescopes. He designed in 1662 what is now called the Huygenian eyepiece, a set of two planoconvex lenses used as a telescope ocular.Bunge et al. (2003), ''Dictionary of Seventeenth and Eighteenth-Century Dutch Philosophers,'' p. 473. Huygens's lenses were known to be of superb quality and polished consistently according to his specifications; however, his telescopes did not produce very sharp images, leading some to speculate that he might have suffered from
near-sightedness Myopia, also known as near-sightedness and short-sightedness, is an eye condition where light from distant objects focuses in front of, instead of on, the retina. As a result, distant objects appear blurred vision, blurry, while close objects ...
. Lenses were also a common interest through which Huygens could meet socially in the 1660s with
Spinoza Baruch (de) Spinoza (24 November 163221 February 1677), also known under his Latinized pen name Benedictus de Spinoza, was a philosopher of Portuguese-Jewish origin, who was born in the Dutch Republic. A forerunner of the Age of Enlightenmen ...
, who ground them professionally. They had rather different outlooks on science, Spinoza being the more committed Cartesian, and some of their discussion survives in correspondence. He encountered the work of
Antoni van Leeuwenhoek Antonie Philips van Leeuwenhoek ( ; ; 24 October 1632 – 26 August 1723) was a Dutch microbiologist and microscopist in the Golden Age of Dutch art, science and technology. A largely self-taught man in science, he is commonly known as " ...
, another lens grinder, in the field of
microscopy Microscopy is the technical field of using microscopes to view subjects too small to be seen with the naked eye (objects that are not within the resolution range of the normal eye). There are three well-known branches of microscopy: optical mic ...
which interested his father. Huygens also investigated the use of lenses in projectors. He is credited as the inventor of the
magic lantern The magic lantern, also known by its Latin name , is an early type of image projector that uses pictures—paintings, prints, or photographs—on transparent plates (usually made of glass), one or more lens (optics), lenses, and a light source. ...
, described in correspondence of 1659. There are others to whom such a lantern device has been attributed, such as Giambattista della Porta and
Cornelis Drebbel Cornelis Jacobszoon Drebbel (; 1572 – 7 November 1633) was a Dutch engineer and inventor. He was the builder of the first operational submarine in 1620 and an innovator who contributed to the development of measurement and control systems, opti ...
, though Huygens's design used lens for better projection (
Athanasius Kircher Athanasius Kircher (2 May 1602 – 27 November 1680) was a German Society of Jesus, Jesuit scholar and polymath who published around 40 major works of comparative religion, geology, and medicine. Kircher has been compared to fellow Jes ...
has also been credited for that).


''Traité de la Lumière''

Huygens is especially remembered in optics for his
wave In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance (change from List of types of equilibrium, equilibrium) of one or more quantities. ''Periodic waves'' oscillate repeatedly about an equilibrium ...
theory of light, which he first communicated in 1678 to the Académie des sciences in Paris. Originally a preliminary chapter of his ''Dioptrica'', Huygens's theory was published in 1690 under the title '' Traité de la Lumière'' (''Treatise on light''), and contains the first fully mathematized, mechanistic explanation of an unobservable physical phenomenon (i.e., light propagation).C. Huygens (1690), translated by Silvanus P. Thompson (1912), ''
Treatise on Light ''Treatise on Light: In Which Are Explained the Causes of That Which Occurs in Reflection & Refraction'' () is a book written by Dutch polymath Christiaan Huygens that was published in French in 1690. The book describes Huygens's conception of ...
'', London: Macmillan, 1912
Project Gutenberg edition
, 2005

, 2016.
Huygens refers to Ignace-Gaston Pardies, whose manuscript on optics helped him on his wave theory. The challenge at the time was to explain
geometrical optics Geometrical optics, or ray optics, is a model of optics that describes light Wave propagation, propagation in terms of ''ray (optics), rays''. The ray in geometrical optics is an abstract object, abstraction useful for approximating the paths along ...
, as most
physical optics In physics, physical optics, or wave optics, is the branch of optics that studies Interference (wave propagation), interference, diffraction, Polarization (waves), polarization, and other phenomena for which the ray approximation of geometric opti ...
phenomena (such as
diffraction Diffraction is the deviation of waves from straight-line propagation without any change in their energy due to an obstacle or through an aperture. The diffracting object or aperture effectively becomes a secondary source of the Wave propagation ...
) had not been observed or appreciated as issues. Huygens had experimented in 1672 with double refraction (
birefringence Birefringence, also called double refraction, is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are described as birefrin ...
) in the Iceland spar (a
calcite Calcite is a Carbonate minerals, carbonate mineral and the most stable Polymorphism (materials science), polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on ...
), a phenomenon discovered in 1669 by
Rasmus Bartholin Rasmus Bartholin (; Latinized: ''Erasmus Bartholinus''; 13 August 1625 – 4 November 1698) was a Danish physician and grammarian. Biography Bartholin was born in Roskilde. He was the son of Caspar Bartholin the Elder (1585–1629) and Ann ...
. At first, he could not elucidate what he found but was later able to explain it using his wavefront theory and concept of evolutes. He also developed ideas on caustics. Huygens assumes that the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant exactly equal to ). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time i ...
is finite, based on a report by
Ole Christensen Rømer OLE, Ole or Olé may refer to: * Olé, a cheering expression used in Spain * Ole (name), a male given name, includes a list of people named Ole * Overhead lines equipment, used to transmit electrical energy to trams, trolleybuses or trains Co ...
in 1677 but which Huygens is presumed to have already believed. Huygens's theory posits light as radiating
wavefront In physics, the wavefront of a time-varying ''wave field (physics), field'' is the set (locus (mathematics), locus) of all point (geometry), points having the same ''phase (waves), phase''. The term is generally meaningful only for fields that, a ...
s, with the common notion of light rays depicting propagation normal to those wavefronts. Propagation of the wavefronts is then explained as the result of spherical waves being emitted at every point along the wave front (known today as the
Huygens–Fresnel principle The Huygens–Fresnel principle (named after Netherlands, Dutch physicist Christiaan Huygens and France, French physicist Augustin-Jean Fresnel) states that every point on a wavefront is itself the source of spherical wavelets, and the secondary w ...
). It assumed an omnipresent
ether In organic chemistry, ethers are a class of compounds that contain an ether group, a single oxygen atom bonded to two separate carbon atoms, each part of an organyl group (e.g., alkyl or aryl). They have the general formula , where R and R ...
, with transmission through perfectly elastic particles, a revision of the view of Descartes. The nature of light was therefore a
longitudinal wave Longitudinal waves are waves which oscillate in the direction which is parallel to the direction in which the wave travels and displacement of the medium is in the same (or opposite) direction of the wave propagation. Mechanical longitudinal ...
. His theory of light was not widely accepted, while Newton's rival
corpuscular theory of light In optics, the corpuscular theory of light states that light is made up of small discrete particles called " corpuscles" (little particles) which travel in a straight line with a finite velocity and possess impetus. This notion was based on an al ...
, as found in his ''
Opticks ''Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light'' is a collection of three books by Isaac Newton that was published in English language, English in 1704 (a scholarly Latin translation appeared in 1706). ...
'' (1704), gained more support. One strong objection to Huygens's theory was that longitudinal waves have only a single
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
which cannot explain the observed birefringence. However, Thomas Young's interference experiments in 1801, and
François Arago Dominique François Jean Arago (), known simply as François Arago (; Catalan: , ; 26 February 17862 October 1853), was a French mathematician, physicist, astronomer, freemason, supporter of the Carbonari revolutionaries and politician. Early l ...
's detection of the Poisson spot in 1819, could not be explained through Newton's or any other particle theory, reviving Huygens's ideas and wave models. Fresnel became aware of Huygens's work and in 1821 was able to explain birefringence as a result of light being not a longitudinal (as had been assumed) but actually a transverse wave. The thus-named Huygens–Fresnel principle was the basis for the advancement of physical optics, explaining all aspects of light propagation until James Clerk Maxwell, Maxwell's History of electromagnetic theory, electromagnetic theory culminated in the development of quantum mechanics and the discovery of the photon.


Astronomy


''Systema Saturnium''

In 1655, Huygens discovered the first of Saturn's moons,
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
, and observed and sketched the Orion Nebula using a
refracting telescope A refracting telescope (also called a refractor) is a type of optical telescope that uses a lens (optics), lens as its objective (optics), objective to form an image (also referred to a dioptrics, dioptric telescope). The refracting telescope d ...
with a 43x magnification of his own design. Huygens succeeded in subdividing the nebula into different stars (the brighter interior now bears the name of the ''Huygenian region'' in his honour), and discovered several nebula, interstellar nebulae and some double stars. He was also the first to propose that the rings of Saturn, appearance of Saturn, which had baffled astronomers, was due to "a thin, flat ring, nowhere touching, and inclined to the ecliptic”. More than three years later, in 1659, Huygens published his theory and findings in ''Systema Saturnium''. It is considered the most important work on telescopic astronomy since Galileo's ''Sidereus Nuncius'' fifty years earlier. Much more than a report on Saturn, Huygens provided measurements for the relative distances of the planets from the Sun, introduced the concept of the Filar micrometer, micrometer, and showed a method to measure angular diameters of planets, which finally allowed the telescope to be used as an instrument to measure (rather than just sighting) astronomical objects. He was also the first to question the authority of Galileo in telescopic matters, a sentiment that was to be common in the years following its publication. In the same year, Huygens was able to observe Syrtis Major Planum, Syrtis Major, a volcanic plain on Mars. He used repeated observations of the movement of this feature over the course of a number of days to estimate the length of day on Mars, which he did quite accurately to 24 1/2 hours. This figure is only a few minutes off of the actual length of the Martian day of 24 hours, 37 minutes.


Planetarium

At the instigation of Jean-Baptiste Colbert, Huygens undertook the task of constructing a mechanical planetarium that could display all the planets and their moons then known circling around the Sun. Huygens completed his design in 1680 and had his clockmaker Johannes van Ceulen built it the following year. However, Colbert died in the interim and Huygens never got to deliver his planetarium to the French Academy of Sciences as the new minister, François-Michel le Tellier, Marquis de Louvois, François-Michel le Tellier, decided not to renew Huygens's contract.van den Bosch, D. (2018). The application of continued fractions in Christiaan Huygens planetariu

In his design, Huygens made an ingenious use of continued fractions to find the best rational approximations by which he could choose the gears with the correct number of teeth. The ratio between two gears determined the orbital periods of two planets. To move the planets around the Sun, Huygens used a clock-mechanism that could go forwards and backwards in time. Huygens claimed his planetarium was more accurate that a similar device constructed by Ole Rømer around the same time, but his planetarium design was not published until after his death in the ''Opuscula Posthuma'' (1703).


''Cosmotheoros''

Shortly before his death in 1695, Huygens completed his most speculative work entitled ''Cosmotheoros''. At his direction, it was to be published only posthumously by his brother, which Constantijn Jr. did in 1698. In this work, Huygens speculated on the existence of extraterrestrial life, which he imagined similar to that on Earth. Such speculations were not uncommon at the time, justified by Copernicanism or the plenitude principle, but Huygens went into greater detail, though without acknowledging Newton's laws of gravitation or the fact that planetary atmospheres are composed of different gases. ''Cosmotheoros,'' translated into English as ''The celestial worlds discover’d'', is fundamentally a utopian work that owes some inspiration to the work of Peter Heylin, and it was likely seen by contemporary readers as a piece of fiction in the tradition of Francis Godwin, John Wilkins, and Cyrano de Bergerac. Huygens wrote that availability of water in liquid form was essential for life and that the properties of water must vary from planet to planet to suit the temperature range. He took his observations of dark and bright spots on the surfaces of Mars and Jupiter to be evidence of water and ice on those planets. He argued that extraterrestrial life is neither confirmed nor denied by the Bible, and questioned why God would create the other planets if they were not to serve a greater purpose than that of being admired from Earth. Huygens postulated that the great distance between the planets signified that God had not intended for beings on one to know about the beings on the others, and had not foreseen how much humans would advance in scientific knowledge. It was also in this book that Huygens published his estimates for the relative sizes of the Solar System and his method for calculating stellar distances. He made a series of smaller holes in a screen facing the Sun, until he estimated the light was of the same intensity as that of the star Sirius. He then calculated that the angle of this hole was 1/27,664th the diameter of the Sun, and thus it was about 30,000 times as far away, on the (incorrect) assumption that Sirius is as luminous as the Sun. The subject of photometry (astronomy), photometry remained in its infancy until the time of Pierre Bouguer and Johann Heinrich Lambert.


Legacy

Huygens has been called the first Theoretical physics, theoretical physicist and a founder of modern mathematical physics. Although his influence was considerable during his lifetime, it began to fade shortly after his death. His skills as a geometer and mechanical ingenuity elicited the admiration of many of his contemporaries, including Newton, Leibniz, Guillaume de l'Hôpital, l'Hôpital, and the Bernoulli family, Bernoullis. For his work in physics, Huygens has been deemed one of the greatest scientists in the Scientific Revolution, rivaled only by Newton in both depth of insight and the number of results obtained. Huygens also helped develop the institutional frameworks for scientific research on the Continental Europe, European continent, making him a leading actor in the establishment of modern science.


Mathematics and physics

In mathematics, Huygens mastered the methods of ancient Greek mathematics, Greek geometry, particularly the work of Archimedes, and was an adept user of the analytic geometry and infinitesimal techniques of Descartes and Fermat. His mathematical style can be best described as geometrical infinitesimal analysis of curves and of motion. Drawing inspiration and imagery from mechanics, it remained pure mathematics in form. Huygens brought this type of geometrical analysis to a close, as more mathematicians turned away from classical geometry to the
calculus Calculus is the mathematics, mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the ...
for handling infinitesimals, limit processes, and motion. Huygens was moreover able to fully employ mathematics to answer questions of physics. Often this entailed introducing a simple Mathematical model, model for describing a complicated situation, then analyzing it starting from simple arguments to their logical consequences, developing the necessary mathematics along the way. As he wrote at the end of a draft of ''De vi Centrifuga'': Huygens favoured Axiomatic system, axiomatic presentations of his results, which require rigorous methods of geometric demonstration: although he allowed levels of uncertainty in the selection of primary axioms and hypotheses, the proofs of theorems derived from these could never be in doubt. Huygens's style of publication exerted an influence in Newton's presentation of his own Philosophiæ Naturalis Principia Mathematica, major Opticks, works. Besides the application of mathematics to physics and physics to mathematics, Huygens relied on mathematics as methodology, specifically its ability to generate new knowledge about the world. Unlike Galileo, who used mathematics primarily as rhetoric or synthesis, Huygens consistently employed mathematics as a way to discover and develop theories covering various phenomena and insisted that the reduction of the physical to the geometrical satisfy exacting standards of fit between the real and the ideal. In demanding such mathematical tractability and precision, Huygens set an example for eighteenth-century scientists such as Johann Bernoulli, Jean le Rond d'Alembert, and Charles-Augustin de Coulomb. Although never intended for publication, Huygens made use of algebraic expressions to represent physical entities in a handful of his manuscripts on collisions. This would make him one of the first to employ mathematical formulae to describe relationships in physics, as it is done today. Huygens also came close to the modern idea of Limit (mathematics), limit while working on his ''Dioptrica,'' though he never used the notion outside geometrical optics.


Later influence

Huygens's standing as the greatest scientist in Europe was eclipsed by Newton's at the end of the seventeenth century, despite the fact that, as Hugh Aldersey-Williams notes, "Huygens's achievement exceeds that of Newton in some important respects". Although his journal publications anticipated the form of the modern Scientific literature, scientific article, his persistent classicism and reluctance to publish his work did much to diminish his influence in the aftermath of the Scientific Revolution, as adherents of Leibniz’ calculus and Newton's physics took centre stage. Huygens's analyses of curves that satisfy certain physical properties, such as the
cycloid In geometry, a cycloid is the curve traced by a point on a circle as it Rolling, rolls along a Line (geometry), straight line without slipping. A cycloid is a specific form of trochoid and is an example of a roulette (curve), roulette, a curve g ...
, led to later studies of many other such curves like the caustic, the Brachistochrone curve, brachistochrone, the sail curve, and the catenary. His application of mathematics to physics, such as in his studies of impact and birefringence, would inspire new developments in mathematical physics and Classical mechanics, rational mechanics in the following centuries (albeit in the new language of the calculus). Additionally, Huygens developed the oscillating timekeeping mechanisms, the pendulum and the balance spring, that have been used ever since in mechanical watches and clocks. These were the first reliable timekeepers fit for Scientific instrument, scientific use (e.g., to make accurate measurements of the Synodic day, inequality of the solar day, which was not possible before). His work in this area foreshadowed the union of applied mathematics with mechanical engineering in the centuries that followed.


Portraits

During his lifetime, Huygens and his father had a number of portraits commissioned. These included: * 1639 – Constantijn Huygens in the midst of his five children by Adriaen Hanneman, painting with medallions, Mauritshuis, The Hague * 1671 – Portrait by Caspar Netscher,
Museum Boerhaave Rijksmuseum Boerhaave is a museum of the history of science and medicine, based in Leiden, Netherlands. The museum hosts a collection of historical scientific instruments from all disciplines, but mainly from medicine, physics, and astronomy. Th ...
, Leiden, loan from Haags Historisch Museum * c.1675 – Depiction of Huygens in ''Établissement de l'Académie des Sciences et fondation de l'observatoire, 1666'' by Henri Testelin. Colbert presents the members of the newly founded Académie des Sciences to king Louis XIV of France. Château de Versailles, Musée National du Château et des Trianons de Versailles, Versailles (commune), Versailles * 1679 – Locket, Medaillon portrait in relief by the French sculptor Jean-Jacques Clérion * 1686 – Portrait in pastel by Bernard Vaillant, Hofwijck, Museum Hofwijck, Voorburg * 1684 to 1687 – Engravings by G. Edelinck after the painting by Caspar Netscher * 1688 – Portrait by Pierre Bourguignon (painter), Royal Netherlands Academy of Arts and Sciences, Amsterdam


Commemorations

The European Space Agency's probe aboard the Cassini–Huygens, Cassini spacecraft that landed on
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
, Saturn's largest moon, in 2005 was Huygens (spacecraft), named after him. A number of monuments to Christiaan Huygens can be found across important cities in the Netherlands, including
Rotterdam Rotterdam ( , ; ; ) is the second-largest List of cities in the Netherlands by province, city in the Netherlands after the national capital of Amsterdam. It is in the Provinces of the Netherlands, province of South Holland, part of the North S ...
, Delft, and
Leiden Leiden ( ; ; in English language, English and Archaism, archaic Dutch language, Dutch also Leyden) is a List of cities in the Netherlands by province, city and List of municipalities of the Netherlands, municipality in the Provinces of the Nethe ...
.


Image gallery

File:Christiaan Huygens Statue Rotterdam.jpg, Rotterdam File:Christiaan Huygens Statue Delft 1.jpg, Delft File:Christiaan Huygens by Frank Letterie.jpg, Leiden File:Tuin, standbeeld van Christiaan Huygens - Haarlem - 20097899 - RCE.jpg, Haarlem File:Voorburg monument huygensmonument.jpg, Voorburg


Works

Source(s): * 1650 – ''De Iis Quae Liquido Supernatant'' (''About parts floating above liquids''), unpublished. * 1651 – ''Theoremata de Quadratura Hyperboles, Ellipsis et Circuli'', republished in ''Oeuvres Complètes'', Tome XI. * 1651 – ''Epistola, qua diluuntur ea quibus 'Εξέτασις [Exetasis] Cyclometriae Gregori à Sto. Vincentio impugnata fuit'', supplement. * 1654 – ''De Circuli Magnitudine Inventa.'' * 1654 – ''Illustrium Quorundam Problematum Constructiones'', supplement. * 1655 – ''Horologium'' (''The clock''), short pamphlet on the pendulum clock. * 1656 – ''De Saturni Luna Observatio Nova'' (''About the new observation of the Titan (moon), moon of Saturn''), describes the discovery of
Titan Titan most often refers to: * Titan (moon), the largest moon of Saturn * Titans, a race of deities in Greek mythology Titan or Titans may also refer to: Arts and entertainment Fictional entities Fictional locations * Titan in fiction, fictiona ...
. * 1656 – ''De Motu Corporum ex Percussione'', published posthumously in 1703. * 1657 – ''De Ratiociniis in Ludo Aleae'' (''Van probability, reeckening in spelen van geluck''), translated into Latin by Frans van Schooten. * 1659 – ''Systema Saturnium'' (''System of Saturn''). * 1659 – ''De vi Centrifuga'' (''Concerning the
centrifugal force Centrifugal force is a fictitious force in Newtonian mechanics (also called an "inertial" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It appears to be directed radially away from the axi ...
''), published posthumously in 1703. * 1673 – ''Horologium Oscillatorium Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae'', includes a theory of evolutes and designs of pendulum clocks, dedicated to Louis XIV of France. * 1684 – ''Astroscopia Compendiaria Tubi Optici Molimine Liberata'' (''Compound telescopes without a tube''). * 1685 – ''Memoriën aengaende het slijpen van glasen tot verrekijckers'', dealing with the grinding of lenses. * 1686 – ''Kort onderwijs aengaende het gebruijck der horologiën tot het vinden der lenghten van Oost en West'' (in Old Dutch language, Dutch), instructions on how to use clocks to establish the
longitude Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
at sea. * 1690 – ''Traité de la Lumière'', dealing with the nature of light propagation. * 1690 – ''Discours de la Cause de la Pesanteur'' (''Discourse about gravity''), supplement. * 1691 – ''Lettre Touchant le Cycle Harmonique'', short tract concerning the 31 equal temperament, 31-tone system. * 1698 – ''Cosmotheoros'', deals with the solar system, cosmology, and extraterrestrial life. * 1703 – ''Opuscula Posthuma'' including: ** ''De Motu Corporum ex Percussione'' (''Concerning the motions of colliding bodies'')'','' contains the first correct laws for collision, dating from 1656. ** ''Descriptio Automati Planetarii'', provides a description and design of a planetarium. * 1724 – ''Novus Cyclus Harmonicus'', a treatise on music published in Leiden after Huygens's death. * 1728 – ''Christiani Hugenii Zuilichemii, dum viveret Zelhemii Toparchae, Opuscula Posthuma'' (alternate title: ''Opera Reliqua''), includes works in optics and physics. * 1888–1950 – ''Huygens, Christiaan. Oeuvres complètes.'' Complete works, 22 volumes. Editors D. Bierens de Haan (1–5), J. Bosscha (6–10), Diederik Johannes Korteweg, D.J. Korteweg (11–15), Albertus Antonie Nijland, A.A. Nijland (15), J.A. Vollgraf (16–22). The Hague: ** ''Tome I: Correspondance 1638–1656'' (1888). ** ''Tome II: Correspondance 1657–1659'' (1889). ** ''Tome III: Correspondance 1660–1661'' (1890). ** ''Tome IV: Correspondance 1662–1663'' (1891). ** ''Tome V: Correspondance 1664–1665'' (1893). ** ''Tome VI: Correspondance 1666–1669'' (1895). ** ''Tome VII: Correspondance 1670–1675'' (1897). ** ''Tome VIII: Correspondance 1676–1684'' (1899). ** ''Tome IX: Correspondance 1685–1690'' (1901). ** ''Tome X: Correspondance 1691–1695'' (1905). ** ''Tome XI: Travaux mathématiques 1645–1651'' (1908). ** ''Tome XII: Travaux mathématiques pures 1652–1656'' (1910). ** ''Tome XIII, Fasc. I: Dioptrique 1653, 1666'' (1916). ** ''Tome XIII, Fasc. II: Dioptrique 1685–1692'' (1916). ** ''Tome XIV: Calcul des probabilités. Travaux de mathématiques pures 1655–1666'' (1920). ** ''Tome XV: Observations astronomiques. Système de Saturne. Travaux astronomiques 1658–1666'' (1925). ** ''Tome XVI: Mécanique jusqu’à 1666. Percussion. Question de l'existence et de la perceptibilité du mouvement absolu. Force centrifuge'' (1929). ** ''Tome XVII: L’horloge à pendule de 1651 à 1666. Travaux divers de physique, de mécanique et de technique de 1650 à 1666. Traité des couronnes et des parhélies (1662 ou 1663)'' (1932). ** ''Tome XVIII: L'horloge à pendule ou à balancier de 1666 à 1695. Anecdota'' (1934). ** ''Tome XIX: Mécanique théorique et physique de 1666 à 1695. Huygens à l'Académie royale des sciences'' (1937). ** ''Tome XX: Musique et mathématique. Musique. Mathématiques de 1666 à 1695'' (1940). ** ''Tome XXI: Cosmologie'' (1944). ** ''Tome XXII: Supplément à la correspondance. Varia. Biographie de Chr. Huygens. Catalogue de la vente des livres de Chr. Huygens'' (1950).


See also


Concepts

* Parallel axis theorem, Huygens–Steiner theorem * Huygens–Fresnel principle, Huygens's principle * Lemniscate of Gerono, Huygens's lemniscate * Evolute * Center of percussion, Centre of oscillation


People

*
René Descartes René Descartes ( , ; ; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and Modern science, science. Mathematics was paramou ...
*
Galileo Galilei Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
*
Isaac Newton Sir Isaac Newton () was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author. Newton was a key figure in the Scientific Revolution and the Age of Enlightenment, Enlightenment that followed ...
* Gottfried Wilhelm Leibniz


Technology

* History of the internal combustion engine * List of largest optical telescopes historically * Adriaan Fokker#Musical instruments, Fokker Organ *Seconds pendulum


References


Further reading

* Cornelis Dirk Andriesse, Andriesse, C.D. (2005). ''Huygens: The Man Behind the Principle''. Foreword by Sally Miedema. Cambridge University Press. *Aldersey-Williams, Hugh. (2020). ''Dutch Light: Christiaan Huygens and the Making of Science in Europe''. London: Picador. * Bell, A. E. (1947). ''Christian Huygens and the Development of Science in the Seventeenth Century'' * Carl Benjamin Boyer, Boyer, C.B. (1968). ''A History of Mathematics'', New York. * Eduard Jan Dijksterhuis, Dijksterhuis, E. J. (1961). ''The Mechanization of the World Picture: Pythagoras to Newton'' * Hooijmaijers, H. (2005). ''Telling time – Devices for time measurement in Museum Boerhaave – A Descriptive Catalogue'', Leiden, Museum Boerhaave. * Dirk Jan Struik, Struik, D.J. (1948). ''A Concise History of Mathematics'' * Van den Ende, H. et al. (2004). ''Huygens's Legacy, The golden age of the pendulum clock'', Fromanteel Ltd, Castle Town, Isle of Man. * Joella Yoder, Yoder, J. G. (2005). "Book on the pendulum clock" in Ivor Grattan-Guinness, ed., ''Landmark Writings in Western Mathematics''. Elsevier: 33–45.


External links


Primary sources, translations

* : ** C. Huygens (translated by Silvanus P. Thompson, 1912),
Treatise on Light
'

* * * *
De Ratiociniis in Ludo Aleae or The Value of all Chances in Games of Fortune, 1657
Christiaan Huygens's book on probability theory. An English translation published in 1714. Text pdf file. *
Horologium oscillatorium
' (German translation, pub. 1913) or

' (English translation by Ian Bruce) on the pendulum clock *

' (''Cosmotheoros''). (English translation of Latin, pub. 1698; subtitled ''The celestial worlds discover'd: or, Conjectures concerning the inhabitants, plants and productions of the worlds in the planets.'') * C. Huygens (translated by Silvanus P. Thompson), ''Traité de la lumière'' or ''Treatise on light'', London: Macmillan, 1912
archive.org/details/treatiseonlight031310mbp
New York: Dover, 1962; Project Gutenberg, 2005
gutenberg.org/ebooks/14725


a digital edition of Smithsonian Libraries *

' (1703)
Huygens's work at WorldCat

The Correspondence of Christiaan Huygens
i
EMLO

Christiaan Huygens biography and achievements

Portraits of Christiaan Huygens
* Huygens's books, in digital facsimile from the Linda Hall Library: ** (1659
''Systema Saturnium''
(Latin) ** (1684
''Astroscopia compendiaria''
(Latin) ** (1690
''Traité de la lumiére''
(French) ** (1698
''ΚΟΣΜΟΘΕΩΡΟΣ, sive De terris cœlestibus''
(Latin)


Museums


Huygensmuseum Hofwijck
in Voorburg, Netherlands, where Huygens lived and worked.
Huygens Clocks
exhibition from the Science Museum, London
Online exhibition
on Huygens in Leiden University Library


Other

*
Huygens and music theory
Huygens–Fokker Foundation —on Huygens's
31 equal temperament In music, 31 equal temperament, which can also be abbreviated (31 tone ) or (equal division of the octave), also known as tricesimoprimal, is the tempered scale derived by dividing the octave into 31 equally-proportioned steps (e ...
and how it has been used
Christiaan Huygens on the 25 Dutch Guilder banknote of the 1950s.
*

{{DEFAULTSORT:Huygens, Christiaan Christiaan Huygens, Huygens family, Christiaan 17th-century Dutch mathematicians 17th-century Dutch writers 17th-century writers in Latin 17th-century Dutch inventors 17th-century Dutch engineers 17th-century Dutch philosophers Members of the French Academy of Sciences Original fellows of the Royal Society Leiden University alumni Scientists from The Hague Geometers Optical physicists Dutch theoretical physicists Discoverers of moons Astronomy in the Dutch Republic Dutch clockmakers Dutch music theorists Dutch scientific instrument makers Dutch members of the Dutch Reformed Church 1629 births 1695 deaths