HOME

TheInfoList



OR:

In
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
and celestial navigation, the hour angle is the dihedral angle between the '' meridian plane'' (containing Earth's axis and the
zenith The zenith (, ) is the imaginary point on the celestial sphere directly "above" a particular location. "Above" means in the vertical direction (Vertical and horizontal, plumb line) opposite to the gravity direction at that location (nadir). The z ...
) and the '' hour circle'' (containing Earth's axis and a given point of interest). It may be given in degrees, time, or rotations depending on the application. The angle may be expressed as negative east of the meridian plane and positive west of the meridian plane, or as positive westward from 0° to 360°. The angle may be measured in degrees or in time, with 24h = 360° exactly. In celestial navigation, the convention is to measure in degrees westward from the prime meridian (Greenwich hour angle, GHA), from the local meridian (local hour angle, LHA) or from the first point of Aries (sidereal hour angle, SHA). The hour angle is paired with the
declination In astronomy, declination (abbreviated dec; symbol ''δ'') is one of the two angles that locate a point on the celestial sphere in the equatorial coordinate system, the other being hour angle. The declination angle is measured north (positive) or ...
to fully specify the location of a point on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, ...
in the equatorial coordinate system.


Relation with right ascension

The local hour angle (LHA) of an object in the observer's sky is \text_ = - \alpha_ or \text_ = + \lambda_ - \alpha_ where LHAobject is the local hour angle of the object, LST is the local sidereal time, \alpha_ is the object's
right ascension Right ascension (abbreviated RA; symbol ) is the angular distance of a particular point measured eastward along the celestial equator from the Sun at the equinox (celestial coordinates), March equinox to the (hour circle of the) point in questio ...
, GST is Greenwich sidereal time and \lambda_ is the observer's
longitude Longitude (, ) is a geographic coordinate that specifies the east- west position of a point on the surface of the Earth, or another celestial body. It is an angular measurement, usually expressed in degrees and denoted by the Greek lett ...
(positive east from the prime meridian). These angles can be measured in time (24 hours to a circle) or in degrees (360 degrees to a circle)—one or the other, not both. Negative hour angles (−180° < LHAobject < 0°) indicate the object is approaching the meridian, positive hour angles (0° < LHAobject < 180°) indicate the object is moving away from the meridian; an hour angle of zero means the object is on the meridian. Right ascension is frequently given in sexagesimal hours-minutes-seconds format (HH:MM:SS) in astronomy, though may be given in decimal hours, sexagesimal degrees (DDD:MM:SS), or, decimal degrees.


Solar hour angle

Observing the Sun from Earth, the ''solar hour angle'' is an expression of time, expressed in angular measurement, usually degrees, from solar noon. At solar noon the hour angle is zero degrees, with the time before solar noon expressed as negative degrees, and the local time after solar noon expressed as positive degrees. For example, at 10:30 AM local apparent time the hour angle is −22.5° (15° per hour times 1.5 hours before noon). The
cosine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
of the hour angle (cos(''h'')) is used to calculate the solar zenith angle. At solar noon, so , and before and after solar noon the cos(± ''h'') term = the same value for morning (negative hour angle) or afternoon (positive hour angle), so that the Sun is at the same altitude in the sky at 11:00AM and 1:00PM solar time.


Sidereal hour angle

The sidereal hour angle (SHA) of a body on the celestial sphere is its angular distance west of the March equinox generally measured in degrees. The SHA of a star varies by less than a minute of arc per year, due to precession, while the SHA of a planet varies significantly from night to night. SHA is often used in celestial navigation and navigational astronomy, and values are published in nautical almanacs.


See also

* Clock position * List of orbits


Notes and references

{{DEFAULTSORT:Hour Angle Astronomical coordinate systems Angle