In mathematics, the Honda–Tate theorem classifies
abelian varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular func ...
over
finite field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subt ...
s up to
isogeny In mathematics, in particular, in algebraic geometry, an isogeny is a morphism of algebraic groups (also known as group varieties) that is surjective and has a finite kernel.
If the groups are abelian varieties, then any morphism of the underlyin ...
. It states that the isogeny classes of simple abelian varieties over a finite field of order ''q'' correspond to
algebraic integer
In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficien ...
s all of whose conjugates (given by eigenvalues of the
Frobenius endomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphi ...
on the first
cohomology group
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewe ...
or
Tate module
In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group ''A''. Often, this construction is made in the following situation: ''G'' is a commutative group scheme over a field ''K'', ' ...
) have absolute value .
showed that the map taking an isogeny class to the eigenvalues of the Frobenius is injective, and showed that this map is surjective, and therefore a bijection.
References
*
*
*
Theorems in algebraic geometry
{{abstract-algebra-stub