Hodge Index Theorem
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Hodge index theorem for an
algebraic surface In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of di ...
''V'' determines the
signature A signature (; from , "to sign") is a depiction of someone's name, nickname, or even a simple "X" or other mark that a person writes on documents as a proof of identity and intent. Signatures are often, but not always, Handwriting, handwritt ...
of the intersection pairing on the
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
s ''C'' on ''V''. It says, roughly speaking, that the space spanned by such curves (up to
linear equivalence In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumfo ...
) has a one-dimensional subspace on which it is
positive definite In mathematics, positive definiteness is a property of any object to which a bilinear form In mathematics, a bilinear form is a bilinear map on a vector space (the elements of which are called '' vectors'') over a field ''K'' (the elements of w ...
(not uniquely determined), and decomposes as a
direct sum The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently but analogously for different kinds of structures. As an example, the direct sum of two abelian groups A and B is anothe ...
of some such one-dimensional subspace, and a complementary subspace on which it is
negative definite In mathematics, negative definiteness is a property of any object to which a bilinear form may be naturally associated, which is negative-definite. See, in particular: * Negative-definite bilinear form * Negative-definite quadratic form * Negati ...
. In a more formal statement, specify that ''V'' is a
non-singular Singular may refer to: * Singular, the grammatical number that denotes a unit quantity, as opposed to the plural and other forms * Singular or sounder, a group of boar, see List of animal names * Singular (band), a Thai jazz pop duo *'' Singular ...
projective surface, and let ''H'' be the
divisor class In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumfo ...
on ''V'' of a
hyperplane section In mathematics, a hyperplane section of a subset ''X'' of projective space P''n'' is the intersection of ''X'' with some hyperplane ''H''. In other words, we look at the subset ''X'H'' of those elements ''x'' of ''X'' that satisfy the single line ...
of ''V'' in a given projective embedding. Then the intersection :H \cdot H = d\ where ''d'' is the degree of ''V'' (in that embedding). Let ''D'' be the vector space of rational divisor classes on ''V'', up to algebraic equivalence. The dimension of ''D'' is finite and is usually denoted by ρ(''V''). The Hodge index theorem says that the subspace spanned by ''H'' in ''D'' has a complementary subspace on which the intersection pairing is negative definite. Therefore, the signature (often also called ''index'') is (1,ρ(''V'')-1). The abelian group of divisor classes up to algebraic equivalence is now called the Néron-Severi group; it is known to be a
finitely-generated abelian group In abstract algebra, an abelian group (G,+) is called finitely generated if there exist finitely many elements x_1,\dots,x_s in G such that every x in G can be written in the form x = n_1x_1 + n_2x_2 + \cdots + n_sx_s for some integers n_1,\dots, n ...
, and the result is about its
tensor product In mathematics, the tensor product V \otimes W of two vector spaces V and W (over the same field) is a vector space to which is associated a bilinear map V\times W \rightarrow V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of ...
with the rational number field. Therefore, ρ(''V'') is equally the rank of the Néron-Severi group (which can have a non-trivial
torsion subgroup In the theory of abelian groups, the torsion subgroup ''AT'' of an abelian group ''A'' is the subgroup of ''A'' consisting of all elements that have finite order (the torsion elements of ''A''). An abelian group ''A'' is called a torsion group ...
, on occasion). This result was proved in the 1930s by
W. V. D. Hodge Sir William Vallance Douglas Hodge (; 17 June 1903 – 7 July 1975) was a British mathematician, specifically a geometer. His discovery of far-reaching topological relations between algebraic geometry and differential geometry—an area no ...
, for varieties over the complex numbers, after it had been a conjecture for some time of the
Italian school of algebraic geometry In relation to the history of mathematics, the Italian school of algebraic geometry refers to mathematicians and their work in birational geometry, particularly on algebraic surfaces, centered around Rome roughly from 1885 to 1935. There were 30 ...
(in particular,
Francesco Severi Francesco Severi (13 April 1879 – 8 December 1961) was an Italian mathematician. He was the chair of the committee on Fields Medal in 1936, at the first delivery. Severi was born in Arezzo, Italy. He is famous for his contributions to algebra ...
, who in this case showed that ρ < ∞). Hodge's methods were the
topological Topology (from the Greek words , and ) is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, wit ...
ones brought in by
Lefschetz Solomon Lefschetz (; 3 September 1884 – 5 October 1972) was a Russian-born American mathematician who did fundamental work on algebraic topology, its applications to algebraic geometry, and the theory of non-linear ordinary differential equatio ...
. The result holds over general (
algebraically closed In mathematics, a field is algebraically closed if every non-constant polynomial in (the univariate polynomial ring with coefficients in ) has a root in . In other words, a field is algebraically closed if the fundamental theorem of algebra h ...
) fields.


References

* {{Citation , last1=Hartshorne , first1=Robin , author1-link=Robin Hartshorne , title=
Algebraic Geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, publisher=
Springer-Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in ...
, location=Berlin, New York , isbn=978-0-387-90244-9 , oclc=13348052 , mr=0463157 , year=1977, see Ch. V.1 Algebraic surfaces Geometry of divisors Intersection theory Theorems in algebraic geometry