Hodge Bundle
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Hodge bundle, named after
W. V. D. Hodge Sir William Vallance Douglas Hodge (; 17 June 1903 – 7 July 1975) was a British mathematician, specifically a geometer. His discovery of far-reaching topological relations between algebraic geometry and differential geometry—an area no ...
, appears in the study of families of
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line, but that does not have to be straight. Intuitively, a curve may be thought of as the trace left by a moving point. This is the definition that ...
s, where it provides an invariant in the
moduli theory In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spac ...
of
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane cu ...
s. Furthermore, it has applications to the theory of
modular form In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modul ...
s on reductive
algebraic groups In mathematics, an algebraic group is an algebraic variety endowed with a group structure that is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory. Many ...
and
string theory In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and intera ...
.


Definition

Let \mathcal_g be the moduli space of algebraic curves of
genus Genus (; : genera ) is a taxonomic rank above species and below family (taxonomy), family as used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In bino ...
''g'' curves over some scheme. The Hodge bundle \Lambda_g is a
vector bundle In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to eve ...
Here, "vector bundle" in the sense of quasi-coherent sheaf on an algebraic stack on \mathcal_g whose
fiber Fiber (spelled fibre in British English; from ) is a natural or artificial substance that is significantly longer than it is wide. Fibers are often used in the manufacture of other materials. The strongest engineering materials often inco ...
at a point ''C'' in \mathcal_g is the space of holomorphic differentials on the curve ''C''. To define the Hodge bundle, let \pi\colon \mathcal_g\rightarrow\mathcal_g be the
universal Universal is the adjective for universe. Universal may also refer to: Companies * NBCUniversal, a media and entertainment company that is a subsidiary of Comcast ** Universal Animation Studios, an American Animation studio, and a subsidiary of N ...
algebraic curve of genus ''g'' and let \omega_g be its relative dualizing sheaf. The Hodge bundle is the
pushforward The notion of pushforward in mathematics is "dual" to the notion of pullback, and can mean a number of different but closely related things. * Pushforward (differential), the differential of a smooth map between manifolds, and the "pushforward" op ...
of this sheaf, i.e., :\Lambda_g=\pi_*\omega_g.


See also

* ELSV formula


Notes


References

{{Algebraic curves navbox Moduli theory Invariant theory Algebraic curves