HOME

TheInfoList



OR:

The history of computing hardware covers the developments from early simple devices to aid calculation to modern day computers. Before the 20th century, most calculations were done by humans. The first aids to computation were purely mechanical devices which required the operator to set up the initial values of an elementary arithmetic operation, then manipulate the device to obtain the result. Later, computers represented numbers in a continuous form (e.g. distance along a scale, rotation of a shaft, or a voltage). Numbers could also be represented in the form of digits, automatically manipulated by a mechanism. Although this approach generally required more complex mechanisms, it greatly increased the precision of results. The development of transistor technology and then the integrated circuit chip led to a series of breakthroughs, starting with transistor computers and then integrated circuit computers, causing digital computers to largely replace analog computers. Metal-oxide-semiconductor (MOS) large-scale integration (LSI) then enabled
semiconductor memory Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a sili ...
and the microprocessor, leading to another key breakthrough, the miniaturized
personal computer A personal computer (PC) is a multi-purpose microcomputer whose size, capabilities, and price make it feasible for individual use. Personal computers are intended to be operated directly by an end user, rather than by a computer expert or tech ...
(PC), in the 1970s. The cost of computers gradually became so low that personal computers by the 1990s, and then mobile computers ( smartphones and tablets) in the 2000s, became ubiquitous.


Early devices


Ancient and medieval

Devices have been used to aid computation for thousands of years, mostly using one-to-one correspondence with fingers. The earliest counting device was probably a form of tally stick. The Lebombo bone from the mountains between Eswatini and
South Africa South Africa, officially the Republic of South Africa (RSA), is the southernmost country in Africa. It is bounded to the south by of coastline that stretch along the South Atlantic and Indian Oceans; to the north by the neighbouring count ...
may be the oldest known mathematical artifact. It dates from 35,000 BCE and consists of 29 distinct notches that were deliberately cut into a baboon's fibula. Later record keeping aids throughout the Fertile Crescent included calculi (clay spheres, cones, etc.) which represented counts of items, probably livestock or grains, sealed in hollow unbaked clay containers. The use of
counting rods Counting rods () are small bars, typically 3–14 cm long, that were used by mathematicians for calculation in ancient East Asia. They are placed either horizontally or vertically to represent any integer or rational number. The written ...
is one example. The abacus was early used for arithmetic tasks. What we now call the Roman abacus was used in Babylonia as early as c. 2700–2300 BC. Since then, many other forms of reckoning boards or tables have been invented. In a medieval European counting house, a checkered cloth would be placed on a table, and markers moved around on it according to certain rules, as an aid to calculating sums of money. Several analog computers were constructed in ancient and medieval times to perform astronomical calculations. These included the astrolabe and Antikythera mechanism from the Hellenistic world (c. 150–100 BC). In
Roman Egypt , conventional_long_name = Roman Egypt , common_name = Egypt , subdivision = Roman province, Province , nation = the Roman Empire , era = Late antiquity , capital = Alexandria , title_leader = Praefectus Augustalis , image_ ...
, Hero of Alexandria (c. 10–70 AD) made mechanical devices including automata and a programmable cart. Other early mechanical devices used to perform one or another type of calculations include the planisphere and other mechanical computing devices invented by
Abu Rayhan al-Biruni Abu Rayhan Muhammad ibn Ahmad al-Biruni (973 – after 1050) commonly known as al-Biruni, was a Khwarazmian Iranian in scholar and polymath during the Islamic Golden Age. He has been called variously the "founder of Indology", "Father of Co ...
(c. AD 1000); the equatorium and universal latitude-independent astrolabe by Abū Ishāq Ibrāhīm al-Zarqālī (c. AD 1015); the astronomical analog computers of other medieval Muslim astronomers and engineers; and the astronomical clock tower of
Su Song Su Song (, 1020–1101), courtesy name Zirong (), was a Chinese polymathic scientist and statesman. Excelling in a variety of fields, he was accomplished in mathematics, Chinese astronomy, astronomy, History of cartography#China, cartography, ...
(1094) during the Song dynasty. The castle clock, a
hydropower Hydropower (from el, ὕδωρ, "water"), also known as water power, is the use of falling or fast-running water to produce electricity or to power machines. This is achieved by converting the gravitational potential or kinetic energy of ...
ed mechanical astronomical clock invented by Ismail al-Jazari in 1206, was the first programmable analog computer.
Ramon Llull Ramon Llull (; c. 1232 – c. 1315/16) was a philosopher, theologian, poet, missionary, and Christian apologist from the Kingdom of Majorca. He invented a philosophical system known as the ''Art'', conceived as a type of universal logic to ...
invented the Lullian Circle: a notional machine for calculating answers to philosophical questions (in this case, to do with Christianity) via logical combinatorics. This idea was taken up by Leibniz centuries later, and is thus one of the founding elements in computing and information science.


Renaissance calculating tools

Scottish mathematician and physicist John Napier discovered that the multiplication and division of numbers could be performed by the addition and subtraction, respectively, of the
logarithm In mathematics, the logarithm is the inverse function to exponentiation. That means the logarithm of a number  to the base  is the exponent to which must be raised, to produce . For example, since , the ''logarithm base'' 10 of ...
s of those numbers. While producing the first logarithmic tables, Napier needed to perform many tedious multiplications. It was at this point that he designed his ' Napier's bones', an abacus-like device that greatly simplified calculations that involved multiplication and division. Since
real number In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s can be represented as distances or intervals on a line, the slide rule was invented in the 1620s, shortly after Napier's work, to allow multiplication and division operations to be carried out significantly faster than was previously possible. Edmund Gunter built a calculating device with a single logarithmic scale at the
University of Oxford The University of Oxford is a collegiate research university in Oxford, England. There is evidence of teaching as early as 1096, making it the oldest university in the English-speaking world and the world's second-oldest university in contin ...
. His device greatly simplified arithmetic calculations, including multiplication and division. William Oughtred greatly improved this in 1630 with his circular slide rule. He followed this up with the modern slide rule in 1632, essentially a combination of two Gunter rules, held together with the hands. Slide rules were used by generations of engineers and other mathematically involved professional workers, until the invention of the pocket calculator.


Mechanical calculators

Wilhelm Schickard, a German polymath, designed a calculating machine in 1623 which combined a mechanized form of Napier's rods with the world's first mechanical adding machine built into the base. Because it made use of a single-tooth gear there were circumstances in which its carry mechanism would jam. A fire destroyed at least one of the machines in 1624 and it is believed Schickard was too disheartened to build another. In 1642, while still a teenager, Blaise Pascal started some pioneering work on calculating machines and after three years of effort and 50 prototypes he invented a mechanical calculator. He built twenty of these machines (called Pascal's calculator or Pascaline) in the following ten years. Nine Pascalines have survived, most of which are on display in European museums. A continuing debate exists over whether Schickard or Pascal should be regarded as the "inventor of the mechanical calculator" and the range of issues to be considered is discussed elsewhere. Gottfried Wilhelm von Leibniz invented the stepped reckoner and his famous stepped drum mechanism around 1672. He attempted to create a machine that could be used not only for addition and subtraction but would use a moveable carriage to enable multiplication and division. Leibniz once said "It is unworthy of excellent men to lose hours like slaves in the labour of calculation which could safely be relegated to anyone else if machines were used." However, Leibniz did not incorporate a fully successful carry mechanism. Leibniz also described the binary numeral system, a central ingredient of all modern computers. However, up to the 1940s, many subsequent designs (including Charles Babbage's machines of the 1822 and even ENIAC of 1945) were based on the decimal system. Around 1820, Charles Xavier Thomas de Colmar created what would over the rest of the century become the first successful, mass-produced mechanical calculator, the Thomas Arithmometer. It could be used to add and subtract, and with a moveable carriage the operator could also multiply, and divide by a process of long multiplication and long division. It utilised a stepped drum similar in conception to that invented by Leibniz. Mechanical calculators remained in use until the 1970s.


Punched-card data processing

In 1804, French weaver
Joseph Marie Jacquard Joseph Marie Charles ''dit'' (called or nicknamed) Jacquard (; 7 July 1752 – 7 August 1834) was a French weaver and merchant. He played an important role in the development of the earliest programmable loom (the " Jacquard loom"), which in tu ...
developed a loom in which the pattern being woven was controlled by a paper tape constructed from punched cards. The paper tape could be changed without changing the mechanical design of the loom. This was a landmark achievement in programmability. His machine was an improvement over similar weaving looms. Punched cards were preceded by punch bands, as in the machine proposed by Basile Bouchon. These bands would inspire information recording for automatic pianos and more recently
numerical control Numerical control (also computer numerical control, and commonly called CNC) is the automated control of machining tools (such as drills, lathes, mills, grinders, routers and 3D printers) by means of a computer. A CNC machine processes a pi ...
machine tools. In the late 1880s, the American Herman Hollerith invented data storage on punched cards that could then be read by a machine. To process these punched cards, he invented the tabulator and the keypunch machine. His machines used electromechanical relays and counters. Hollerith's method was used in the 1890 United States Census. That census was processed two years faster than the prior census had been. "You may confidently look for the rapid reduction of the force of this office after the 1st of October, and the entire cessation of clerical work during the present calendar year. ... The condition of the work of the Census Division and the condition of the final reports show clearly that the work of the Eleventh Census will be completed at least two years earlier than was the work of the Tenth Census." — Carroll D. Wright, Commissioner of Labor in Charge Hollerith's company eventually became the core of IBM. By 1920, electromechanical tabulating machines could add, subtract, and print accumulated totals. Machine functions were directed by inserting dozens of wire jumpers into removable control panels. When the United States instituted Social Security in 1935, IBM punched-card systems were used to process records of 26 million workers. Punched cards became ubiquitous in industry and government for accounting and administration.
Leslie Comrie Leslie John Comrie FRS (15 August 1893 – 11 December 1950) was an astronomer and a pioneer in mechanical computation. Life Leslie John Comrie was born in Pukekohe (south of Auckland), New Zealand, on 15 August 1893. He attended Auckland Un ...
's articles on punched-card methods and
W. J. Eckert Wallace John Eckert (June 19, 1902 – August 24, 1971) was an American astronomer, who directed the Thomas J. Watson Astronomical Computing Bureau at Columbia University which evolved into the research division of IBM. Life Wallace John Eckert ...
's publication of ''Punched Card Methods in Scientific Computation'' in 1940, described punched-card techniques sufficiently advanced to solve some differential equations or perform multiplication and division using floating-point representations, all on punched cards and unit record machines. Such machines were used during World War II for cryptographic statistical processing, as well as a vast number of administrative uses. The Astronomical Computing Bureau,
Columbia University Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manha ...
, performed astronomical calculations representing the state of the art in
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
.


Calculators

By the 20th century, earlier mechanical calculators, cash registers, accounting machines, and so on were redesigned to use electric motors, with gear position as the representation for the state of a variable. The word "computer" was a job title assigned to primarily women who used these calculators to perform mathematical calculations. By the 1920s, British scientist
Lewis Fry Richardson Lewis Fry Richardson, FRS (11 October 1881 – 30 September 1953) was an English mathematician, physicist, meteorologist, psychologist, and pacifist who pioneered modern mathematical techniques of weather forecasting, and the application of si ...
's interest in weather prediction led him to propose
human computer The term "computer", in use from the early 17th century (the first known written reference dates from 1613), meant "one who computes": a person performing mathematical calculations, before electronic computers became commercially available. A ...
s and numerical analysis to model the weather; to this day, the most powerful computers on
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surf ...
are needed to adequately model its weather using the
Navier–Stokes equations In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician G ...
. Companies like Friden, Marchant Calculator and Monroe made desktop mechanical calculators from the 1930s that could add, subtract, multiply and divide. In 1948, the Curta was introduced by Austrian inventor Curt Herzstark. It was a small, hand-cranked mechanical calculator and as such, a descendant of
Gottfried Leibniz Gottfried Wilhelm (von) Leibniz . ( – 14 November 1716) was a German polymath active as a mathematician, philosopher, scientist and diplomat. He is one of the most prominent figures in both the history of philosophy and the history of mat ...
's Stepped Reckoner and Thomas' Arithmometer. The world's first ''all-electronic desktop'' calculator was the British Bell Punch ANITA, released in 1961. It used
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. The type kn ...
s, cold-cathode tubes and Dekatrons in its circuits, with 12 cold-cathode "Nixie" tubes for its display. The ANITA sold well since it was the only electronic desktop calculator available, and was silent and quick. The tube technology was superseded in June 1963 by the U.S. manufactured Friden EC-130, which had an all-transistor design, a stack of four 13-digit numbers displayed on a
CRT CRT or Crt may refer to: Science, technology, and mathematics Medicine and biology * Calreticulin, a protein *Capillary refill time, for blood to refill capillaries *Cardiac resynchronization therapy and CRT defibrillator (CRT-D) * Catheter-re ...
, and introduced reverse Polish notation (RPN).


First general-purpose computing device

Charles Babbage, an English mechanical engineer and polymath, originated the concept of a programmable computer. Considered the " father of the computer", he conceptualized and invented the first mechanical computer in the early 19th century. After working on his revolutionary difference engine, designed to aid in navigational calculations, in 1833 he realized that a much more general design, an Analytical Engine, was possible. The input of programs and data was to be provided to the machine via punched cards, a method being used at the time to direct mechanical
loom A loom is a device used to weave cloth and tapestry. The basic purpose of any loom is to hold the warp threads under tension to facilitate the interweaving of the weft threads. The precise shape of the loom and its mechanics may vary, but ...
s such as the Jacquard loom. For output, the machine would have a printer, a curve plotter and a bell. The machine would also be able to punch numbers onto cards to be read in later. It employed ordinary base-10 fixed-point arithmetic. The Engine incorporated an arithmetic logic unit,
control flow In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an '' ...
in the form of conditional branching and loops, and integrated memory, making it the first design for a general-purpose computer that could be described in modern terms as Turing-complete. There was to be a store, or memory, capable of holding 1,000 numbers of 40 decimal digits each (ca. 16.7 kB). An arithmetical unit, called the "mill", would be able to perform all four arithmetic operations, plus comparisons and optionally square roots. Initially it was conceived as a difference engine curved back upon itself, in a generally circular layout, with the long store exiting off to one side. (Later drawings depict a regularized grid layout.) Like the
central processing unit A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, an ...
(CPU) in a modern computer, the mill would rely on its own internal procedures, roughly equivalent to
microcode In processor design, microcode (μcode) is a technique that interposes a layer of computer organization between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer. Microcode is a laye ...
in modern CPUs, to be stored in the form of pegs inserted into rotating drums called "barrels", to carry out some of the more complex instructions the user's program might specify. The programming language to be employed by users was akin to modern day assembly languages. Loops and conditional branching were possible, and so the language as conceived would have been Turing-complete as later defined by
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
. Three different types of punch cards were used: one for arithmetical operations, one for numerical constants, and one for load and store operations, transferring numbers from the store to the arithmetical unit or back. There were three separate readers for the three types of cards. The machine was about a century ahead of its time. However, the project was slowed by various problems including disputes with the chief machinist building parts for it. All the parts for his machine had to be made by hand—this was a major problem for a machine with thousands of parts. Eventually, the project was dissolved with the decision of the British Government to cease funding. Babbage's failure to complete the analytical engine can be chiefly attributed to difficulties not only of politics and financing, but also to his desire to develop an increasingly sophisticated computer and to move ahead faster than anyone else could follow. Ada Lovelace translated and added notes to the "''Sketch of the Analytical Engine''" by
Luigi Federico Menabrea Luigi Federico Menabrea (4 September 1809 – 24 May 1896), later made 1st Count Menabrea and 1st Marquess of Valdora, was an Italian general, statesman and mathematician who served as the seventh prime minister of Italy from 1867 to 1869. B ...
. This appears to be the first published description of programming, so Ada Lovelace is widely regarded as the first computer programmer. Following Babbage, although at first unaware of his earlier work, was Percy Ludgate, a clerk to a corn merchant in Dublin, Ireland. He independently designed a programmable mechanical computer, which he described in a work that was published in 1909. Two other inventors, Leonardo Torres y Quevedo and Vannevar Bush, also did follow on research based on Babbage's work. In his ''Essays on Automatics'' (1913) Torres y Quevedo designed a Babbage type of calculating machine that used electromechanical parts which included floating-point number representations and built an early prototype in 1920. Bush's paper ''Instrumental Analysis'' (1936) discussed using existing IBM punch card machines to implement Babbage's design. In the same year he started the Rapid Arithmetical Machine project to investigate the problems of constructing an electronic digital computer.


Analog computers

In the first half of the 20th century, analog computers were considered by many to be the future of computing. These devices used the continuously changeable aspects of physical phenomena such as electrical, mechanical, or hydraulic quantities to model the problem being solved, in contrast to digital computers that represented varying quantities symbolically, as their numerical values change. As an analog computer does not use discrete values, but rather continuous values, processes cannot be reliably repeated with exact equivalence, as they can with Turing machines. The first modern analog computer was a tide-predicting machine, invented by Sir William Thomson, later Lord Kelvin, in 1872. It used a system of pulleys and wires to automatically calculate predicted tide levels for a set period at a particular location and was of great utility to navigation in shallow waters. His device was the foundation for further developments in analog computing. The differential analyser, a mechanical analog computer designed to solve differential equations by integration using wheel-and-disc mechanisms, was conceptualized in 1876 by James Thomson, the brother of the more famous Lord Kelvin. He explored the possible construction of such calculators, but was stymied by the limited output torque of the ball-and-disk integrators. In a differential analyzer, the output of one integrator drove the input of the next integrator, or a graphing output. An important advance in analog computing was the development of the first fire-control systems for long range
ship A ship is a large watercraft that travels the world's oceans and other sufficiently deep waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research, and fishing. Ships are generally distinguishe ...
gunlaying. When gunnery ranges increased dramatically in the late 19th century it was no longer a simple matter of calculating the proper aim point, given the flight times of the shells. Various spotters on board the ship would relay distance measures and observations to a central plotting station. There the fire direction teams fed in the location, speed and direction of the ship and its target, as well as various adjustments for Coriolis effect, weather effects on the air, and other adjustments; the computer would then output a firing solution, which would be fed to the turrets for laying. In 1912, British engineer Arthur Pollen developed the first electrically powered mechanical analogue computer (called at the time the Argo Clock). It was used by the Imperial Russian Navy in
World War I World War I (28 July 1914 11 November 1918), often abbreviated as WWI, was List of wars and anthropogenic disasters by death toll, one of the deadliest global conflicts in history. Belligerents included much of Europe, the Russian Empire, ...
. The alternative Dreyer Table fire control system was fitted to British capital ships by mid-1916. Mechanical devices were also used to aid the accuracy of aerial bombing. Drift Sight was the first such aid, developed by Harry Wimperis in 1916 for the
Royal Naval Air Service The Royal Naval Air Service (RNAS) was the air arm of the Royal Navy, under the direction of the Admiralty's Air Department, and existed formally from 1 July 1914 to 1 April 1918, when it was merged with the British Army's Royal Flying Corps t ...
; it measured the wind speed from the air, and used that measurement to calculate the wind's effects on the trajectory of the bombs. The system was later improved with the
Course Setting Bomb Sight The Course Setting Bomb Sight (CSBS) is the canonical ''vector'' bombsight, the first practical system for properly accounting for the effects of wind when dropping bombs. It is also widely referred to as the Wimperis sight after its inventor, ...
, and reached a climax with
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
bomb sights, Mark XIV bomb sight (
RAF Bomber Command RAF Bomber Command controlled the Royal Air Force's bomber forces from 1936 to 1968. Along with the United States Army Air Forces, it played the central role in the strategic bombing of Germany in World War II. From 1942 onward, the British bo ...
) and the Norden (
United States Army Air Forces The United States Army Air Forces (USAAF or AAF) was the major land-based aerial warfare service component of the United States Army and ''de facto'' aerial warfare service branch of the United States during and immediately after World War II ...
). The art of mechanical analog computing reached its zenith with the differential analyzer, built by H. L. Hazen and Vannevar Bush at MIT starting in 1927, which built on the mechanical integrators of James Thomson and the torque amplifiers invented by H. W. Nieman. A dozen of these devices were built before their obsolescence became obvious; the most powerful was constructed at the
University of Pennsylvania The University of Pennsylvania (also known as Penn or UPenn) is a private research university in Philadelphia. It is the fourth-oldest institution of higher education in the United States and is ranked among the highest-regarded universit ...
's Moore School of Electrical Engineering, where the ENIAC was built. A fully electronic analog computer was built by Helmut Hölzer in 1942 at Peenemünde Army Research Center. By the 1950s the success of digital electronic computers had spelled the end for most analog computing machines, but hybrid analog computers, controlled by digital electronics, remained in substantial use into the 1950s and 1960s, and later in some specialized applications.


Advent of the digital computer

The principle of the modern computer was first described by computer scientist
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
, who set out the idea in his seminal 1936 paper, ''On Computable Numbers''. Turing reformulated
Kurt Gödel Kurt Friedrich Gödel ( , ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel had an imme ...
's 1931 results on the limits of proof and computation, replacing Gödel's universal arithmetic-based formal language with the formal and simple hypothetical devices that became known as Turing machines. He proved that some such machine would be capable of performing any conceivable mathematical computation if it were representable as an algorithm. He went on to prove that there was no solution to the '' Entscheidungsproblem'' by first showing that the halting problem for Turing machines is undecidable: in general, it is not possible to decide algorithmically whether a given Turing machine will ever halt. He also introduced the notion of a "universal machine" (now known as a universal Turing machine), with the idea that such a machine could perform the tasks of any other machine, or in other words, it is provably capable of computing anything that is computable by executing a program stored on tape, allowing the machine to be programmable. Von Neumann acknowledged that the central concept of the modern computer was due to this paper. Turing machines are to this day a central object of study in theory of computation. Except for the limitations imposed by their finite memory stores, modern computers are said to be Turing-complete, which is to say, they have algorithm execution capability equivalent to a universal Turing machine.


Electromechanical computers

The era of modern computing began with a flurry of development before and during World War II. Most digital computers built in this period were electromechanical – electric switches drove mechanical relays to perform the calculation. These devices had a low operating speed and were eventually superseded by much faster all-electric computers, originally using
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. The type kn ...
s. The Z2 was one of the earliest examples of an electromechanical relay computer, and was created by German engineer Konrad Zuse in 1940. It was an improvement on his earlier Z1; although it used the same mechanical memory, it replaced the arithmetic and control logic with electrical relay circuits. In the same year, electro-mechanical devices called bombes were built by British cryptologists to help decipher German Enigma-machine-encrypted secret messages during
World War II World War II or the Second World War, often abbreviated as WWII or WW2, was a world war that lasted from 1939 to 1945. It involved the World War II by country, vast majority of the world's countries—including all of the great power ...
. The bombe's initial design was created in 1939 at the UK Government Code and Cypher School (GC&CS) at Bletchley Park by
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
, with an important refinement devised in 1940 by Gordon Welchman. The engineering design and construction was the work of Harold Keen of the British Tabulating Machine Company. It was a substantial development from a device that had been designed in 1938 by
Polish Cipher Bureau The Cipher Bureau, in Polish language, Polish: ''Biuro Szyfrów'' (), was the interwar Polish General Staff's Second Department of Polish General Staff, Second Department's unit charged with SIGINT and both cryptography (the ''use'' of ciphers an ...
cryptologist
Marian Rejewski Marian Adam Rejewski (; 16 August 1905 – 13 February 1980) was a Polish mathematician and cryptologist who in late 1932 reconstructed the sight-unseen German military Enigma cipher machine, aided by limited documents obtained by French mili ...
, and known as the " cryptologic bomb" ( Polish: ''"bomba kryptologiczna"''). In 1941, Zuse followed his earlier machine up with the Z3, the world's first working electromechanical programmable, fully automatic digital computer. The Z3 was built with 2000 relays, implementing a 22-
bit The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented a ...
word length that operated at a clock frequency of about 5–10  Hz. Program code and data were stored on punched film. It was quite similar to modern machines in some respects, pioneering numerous advances such as floating-point numbers. Replacement of the hard-to-implement decimal system (used in Charles Babbage's earlier design) by the simpler binary system meant that Zuse's machines were easier to build and potentially more reliable, given the technologies available at that time. The Z3 was proven to have been a Turing-complete machine in 1998 by Raúl Rojas. In two 1936
patent A patent is a type of intellectual property that gives its owner the legal right to exclude others from making, using, or selling an invention for a limited period of time in exchange for publishing an sufficiency of disclosure, enabling disclo ...
applications, Zuse also anticipated that machine instructions could be stored in the same storage used for data—the key insight of what became known as the von Neumann architecture, first implemented in 1948 in America in the electromechanical
IBM SSEC The IBM Selective Sequence Electronic Calculator (SSEC) was an electromechanical computer built by IBM. Its design was started in late 1944 and it operated from January 1948 to August 1952. It had many of the features of a stored-program computer, ...
and in Britain in the fully electronic Manchester Baby. Zuse suffered setbacks during World War II when some of his machines were destroyed in the course of Allied bombing campaigns. Apparently his work remained largely unknown to engineers in the UK and US until much later, although at least IBM was aware of it as it financed his post-war startup company in 1946 in return for an option on Zuse's patents. In 1944, the Harvard Mark I was constructed at IBM's Endicott laboratories. It was a similar general purpose electro-mechanical computer to the Z3, but was not quite Turing-complete.


Digital computation

The term digital was first suggested by George Robert Stibitz and refers to where a signal, such as a voltage, is not used to directly represent a value (as it would be in an analog computer), but to encode it. In November 1937, Stibitz, then working at Bell Labs (1930–1941), completed a relay-based calculator he later dubbed the " Model K" (for "kitchen table", on which he had assembled it), which became the first binary adder. Typically signals have two states – low (usually representing 0) and high (usually representing 1), but sometimes three-valued logic is used, especially in high-density memory. Modern computers generally use binary logic, but many early machines were decimal computers. In these machines, the basic unit of data was the decimal digit, encoded in one of several schemes, including binary-coded decimal or BCD, bi-quinary, excess-3, and two-out-of-five code. The mathematical basis of digital computing is
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas ...
, developed by the British mathematician
George Boole George Boole (; 2 November 1815 – 8 December 1864) was a largely self-taught English mathematician, philosopher, and logician, most of whose short career was spent as the first professor of mathematics at Queen's College, Cork in ...
in his work '' The Laws of Thought'', published in 1854. His Boolean algebra was further refined in the 1860s by William Jevons and
Charles Sanders Peirce Charles Sanders Peirce ( ; September 10, 1839 – April 19, 1914) was an American philosopher, logician, mathematician and scientist who is sometimes known as "the father of pragmatism". Educated as a chemist and employed as a scientist for ...
, and was first presented systematically by Ernst Schröder and
A. N. Whitehead Alfred North Whitehead (15 February 1861 – 30 December 1947) was an English mathematician and philosopher. He is best known as the defining figure of the philosophical school known as process philosophy, which today has found applicat ...
. In 1879 Gottlob Frege develops the formal approach to logic and proposes the first logic language for logical equations. In the 1930s and working independently, American electronic engineer
Claude Shannon Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, and cryptographer known as a "father of information theory". As a 21-year-old master's degree student at the Massachusetts In ...
and Soviet logician Victor Shestakov both showed a one-to-one correspondence between the concepts of Boolean logic and certain electrical circuits, now called
logic gate A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, ...
s, which are now ubiquitous in digital computers. They showed that electronic relays and switches can realize the expressions of
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variables are the truth values ''true'' and ''false'', usually denoted 1 and 0, whereas ...
. This thesis essentially founded practical digital circuit design. In addition Shannon's paper gives a correct circuit diagram for a 4 bit digital binary adder.


Electronic data processing

Purely electronic circuit elements soon replaced their mechanical and electromechanical equivalents, at the same time that digital calculation replaced analog. Machines such as the Z3, the Atanasoff–Berry Computer, the Colossus computers, and the ENIAC were built by hand, using circuits containing relays or valves (vacuum tubes), and often used punched cards or punched paper tape for input and as the main (non-volatile) storage medium. Engineer Tommy Flowers joined the telecommunications branch of the General Post Office in 1926. While working at the research station in Dollis Hill in the 1930s, he began to explore the possible use of electronics for the
telephone exchange A telephone exchange, telephone switch, or central office is a telecommunications system used in the public switched telephone network (PSTN) or in large enterprises. It interconnects telephone subscriber lines or virtual circuits of digital syst ...
. Experimental equipment that he built in 1934 went into operation 5 years later, converting a portion of the
telephone exchange A telephone exchange, telephone switch, or central office is a telecommunications system used in the public switched telephone network (PSTN) or in large enterprises. It interconnects telephone subscriber lines or virtual circuits of digital syst ...
network into an electronic data processing system, using thousands of
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. The type kn ...
s. In the US, in 1940 Arthur Dickinson (IBM) invented the first digital electronic computer. This calculating device was fully electronic – control, calculations and output (the first electronic display). John Vincent Atanasoff and Clifford E. Berry of Iowa State University developed the Atanasoff–Berry Computer (ABC) in 1942, the first binary electronic digital calculating device. This design was semi-electronic (electro-mechanical control and electronic calculations), and used about 300 vacuum tubes, with capacitors fixed in a mechanically rotating drum for memory. However, its paper card writer/reader was unreliable and the regenerative drum contact system was mechanical. The machine's special-purpose nature and lack of changeable, stored program distinguish it from modern computers. Computers whose logic was primarily built using vacuum tubes are now known as first generation computers.


The electronic programmable computer

During World War II, British codebreakers at Bletchley Park, north of London, achieved a number of successes at breaking encrypted enemy military communications. The German encryption machine, Enigma, was first attacked with the help of the electro-mechanical bombes. Women often operated these bombe machines. They ruled out possible Enigma settings by performing chains of logical deductions implemented electrically. Most possibilities led to a contradiction, and the few remaining could be tested by hand. The Germans also developed a series of teleprinter encryption systems, quite different from Enigma. The Lorenz SZ 40/42 machine was used for high-level Army communications, code-named "Tunny" by the British. The first intercepts of Lorenz messages began in 1941. As part of an attack on Tunny, Max Newman and his colleagues developed the Heath Robinson, a fixed-function machine to aid in code breaking. Tommy Flowers, a senior engineer at the Post Office Research Station was recommended to Max Newman by Alan Turing and spent eleven months from early February 1943 designing and building the more flexible Colossus computer (which superseded the Heath Robinson). After a functional test in December 1943, Colossus was shipped to Bletchley Park, where it was delivered on 18 January 1944 and attacked its first message on 5 February. Colossus was the world's first electronic digital programmable computer. It used a large number of valves (vacuum tubes). It had paper-tape input and was capable of being configured to perform a variety of boolean logical operations on its data, but it was not Turing-complete. Data input to Colossus was by photoelectric reading of a paper tape transcription of the enciphered intercepted message. This was arranged in a continuous loop so that it could be read and re-read multiple times – there being no internal store for the data. The reading mechanism ran at 5,000 characters per second with the paper tape moving at . Colossus Mark 1 contained 1500 thermionic valves (tubes), but Mark 2 with 2400 valves and five processors in parallel, was both 5 times faster and simpler to operate than Mark 1, greatly speeding the decoding process. Mark 2 was designed while Mark 1 was being constructed.
Allen Coombs Allen William Mark (Doc) Coombs (23 October 1911 – 30 January 1995) was a British electronics engineer at the Post Office Research Station, Dollis Hill. Coombs was one of the principal designers of the Mark II or production version of the ...
took over leadership of the Colossus Mark 2 project when Tommy Flowers moved on to other projects. The first Mark 2 Colossus became operational on 1 June 1944, just in time for the Allied Invasion of Normandy on D-Day. Most of the use of Colossus was in determining the start positions of the Tunny rotors for a message, which was called "wheel setting". Colossus included the first-ever use of shift registers and systolic arrays, enabling five simultaneous tests, each involving up to 100 Boolean calculations. This enabled five different possible start positions to be examined for one transit of the paper tape. As well as wheel setting some later Colossi included mechanisms intended to help determine pin patterns known as "wheel breaking". Both models were programmable using switches and plug panels in a way their predecessors had not been. Ten Mk 2 Colossi were operational by the end of the war. Without the use of these machines, the Allies would have been deprived of the very valuable
intelligence Intelligence has been defined in many ways: the capacity for abstraction, logic, understanding, self-awareness, learning, emotional knowledge, reasoning, planning, creativity, critical thinking, and problem-solving. It can be described as the ...
that was obtained from reading the vast quantity of
encipher In cryptography, a cipher (or cypher) is an algorithm for performing encryption or decryption—a series of well-defined steps that can be followed as a procedure. An alternative, less common term is ''encipherment''. To encipher or encode i ...
ed high-level telegraphic messages between the German High Command (OKW) and their
army An army (from Old French ''armee'', itself derived from the Latin verb ''armāre'', meaning "to arm", and related to the Latin noun ''arma'', meaning "arms" or "weapons"), ground force or land force is a fighting force that fights primarily on ...
commands throughout occupied Europe. Details of their existence, design, and use were kept secret well into the 1970s.
Winston Churchill Sir Winston Leonard Spencer Churchill (30 November 187424 January 1965) was a British statesman, soldier, and writer who served as Prime Minister of the United Kingdom twice, from 1940 to 1945 Winston Churchill in the Second World War, dur ...
personally issued an order for their destruction into pieces no larger than a man's hand, to keep secret that the British were capable of cracking Lorenz SZ cyphers (from German rotor stream cipher machines) during the oncoming Cold War. Two of the machines were transferred to the newly formed GCHQ and the others were destroyed. As a result, the machines were not included in many histories of computing. A reconstructed working copy of one of the Colossus machines is now on display at Bletchley Park. The US-built ENIAC (Electronic Numerical Integrator and Computer) was the first electronic programmable computer built in the US. Although the ENIAC was similar to the Colossus it was much faster and more flexible. It was unambiguously a Turing-complete device and could compute any problem that would fit into its memory. Like the Colossus, a "program" on the ENIAC was defined by the states of its patch cables and switches, a far cry from the stored program electronic machines that came later. Once a program was written, it had to be mechanically set into the machine with manual resetting of plugs and switches. The programmers of the ENIAC were women who had been trained as mathematicians. It combined the high speed of electronics with the ability to be programmed for many complex problems. It could add or subtract 5000 times a second, a thousand times faster than any other machine. It also had modules to multiply, divide, and square root. High-speed memory was limited to 20 words (equivalent to about 80 bytes). Built under the direction of John Mauchly and J. Presper Eckert at the University of Pennsylvania, ENIAC's development and construction lasted from 1943 to full operation at the end of 1945. The machine was huge, weighing 30 tons, using 200 kilowatts of electric power and contained over 18,000 vacuum tubes, 1,500 relays, and hundreds of thousands of resistors, capacitors, and inductors. One of its major engineering feats was to minimize the effects of tube burnout, which was a common problem in machine reliability at that time. The machine was in almost constant use for the next ten years.


Stored-program computer

Early computing machines were programmable in the sense that they could follow the sequence of steps they had been set up to execute, but the "program", or steps that the machine was to execute, were set up usually by changing how the wires were plugged into a patch panel or plugboard. "Reprogramming", when it was possible at all, was a laborious process, starting with engineers working out flowcharts, designing the new set up, and then the often-exacting process of physically re-wiring patch panels. Stored-program computers, by contrast, were designed to store a set of instructions (a program), in memory – typically the same memory as stored data.


Theory

The theoretical basis for the stored-program computer had been proposed by
Alan Turing Alan Mathison Turing (; 23 June 1912 – 7 June 1954) was an English mathematician, computer scientist, logician, cryptanalyst, philosopher, and theoretical biologist. Turing was highly influential in the development of theoretical c ...
in his 1936 paper. In 1945 Turing joined the National Physical Laboratory and began his work on developing an electronic stored-program digital computer. His 1945 report 'Proposed Electronic Calculator' was the first specification for such a device. Meanwhile, John von Neumann at the Moore School of Electrical Engineering,
University of Pennsylvania The University of Pennsylvania (also known as Penn or UPenn) is a private research university in Philadelphia. It is the fourth-oldest institution of higher education in the United States and is ranked among the highest-regarded universit ...
, circulated his '' First Draft of a Report on the EDVAC'' in 1945. Although substantially similar to Turing's design and containing comparatively little engineering detail, the computer architecture it outlined became known as the " von Neumann architecture". Turing presented a more detailed paper to the National Physical Laboratory (NPL) Executive Committee in 1946, giving the first reasonably complete design of a
stored-program computer A stored-program computer is a computer that stores program instructions in electronically or optically accessible memory. This contrasts with systems that stored the program instructions with plugboards or similar mechanisms. The definition i ...
, a device he called the Automatic Computing Engine (ACE). However, the better-known EDVAC design of John von Neumann, who knew of Turing's theoretical work, received more publicity, despite its incomplete nature and questionable lack of attribution of the sources of some of the ideas. Turing thought that the speed and the size of computer memory were crucial elements, so he proposed a high-speed memory of what would today be called 25 KB, accessed at a speed of 1 MHz. The ACE implemented
subroutine In computer programming, a function or subroutine is a sequence of program instructions that performs a specific task, packaged as a unit. This unit can then be used in programs wherever that particular task should be performed. Functions may ...
calls, whereas the EDVAC did not, and the ACE also used ''Abbreviated Computer Instructions,'' an early form of programming language.


Manchester Baby

The Manchester Baby (Small Scale Experimental Machine, SSEM) was the world's first electronic
stored-program computer A stored-program computer is a computer that stores program instructions in electronically or optically accessible memory. This contrasts with systems that stored the program instructions with plugboards or similar mechanisms. The definition i ...
. It was built at the Victoria University of Manchester by Frederic C. Williams, Tom Kilburn and Geoff Tootill, and ran its first program on 21 June 1948. The machine was not intended to be a practical computer but was instead designed as a testbed for the Williams tube, the first random-access digital storage device. Invented by Freddie Williams and Tom Kilburn at the University of Manchester in 1946 and 1947, it was a cathode-ray tube that used an effect called
secondary emission In particle physics, secondary emission is a phenomenon where primary incident particles of sufficient energy, when hitting a surface or passing through some material, induce the emission of secondary particles. The term often refers to the emi ...
to temporarily store electronic binary data, and was used successfully in several early computers. Described as small and primitive in a 1998 retrospective, the Baby was the first working machine to contain all of the elements essential to a modern electronic computer. As soon as it had demonstrated the feasibility of its design, a project was initiated at the university to develop the design into a more usable computer, the Manchester Mark 1. The Mark 1 in turn quickly became the prototype for the Ferranti Mark 1, the world's first commercially available general-purpose computer. The Baby had a 32-
bit The bit is the most basic unit of information in computing and digital communications. The name is a portmanteau of binary digit. The bit represents a logical state with one of two possible values. These values are most commonly represented a ...
word length and a memory of 32 words. As it was designed to be the simplest possible stored-program computer, the only arithmetic operations implemented in hardware were
subtraction Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. Subtraction is signified by the minus sign, . For example, in the adjacent picture, there are peaches—meaning 5 peaches with 2 taken ...
and
negation In logic, negation, also called the logical complement, is an operation that takes a proposition P to another proposition "not P", written \neg P, \mathord P or \overline. It is interpreted intuitively as being true when P is false, and false ...
; other arithmetic operations were implemented in software. The first of three programs written for the machine found the highest proper divisor of 218 (262,144), a calculation that was known would take a long time to run—and so prove the computer's reliability—by testing every integer from 218 − 1 downwards, as division was implemented by repeated subtraction of the divisor. The program consisted of 17 instructions and ran for 52 minutes before reaching the correct answer of 131,072, after the Baby had performed 3.5 million operations (for an effective CPU speed of 1.1 kIPS). The successive approximations to the answer were displayed as a pattern of dots on the output
CRT CRT or Crt may refer to: Science, technology, and mathematics Medicine and biology * Calreticulin, a protein *Capillary refill time, for blood to refill capillaries *Cardiac resynchronization therapy and CRT defibrillator (CRT-D) * Catheter-re ...
which mirrored the pattern held on the Williams tube used for storage.


Manchester Mark 1

The SSEM led to the development of the Manchester Mark 1 at the University of Manchester. Work began in August 1948, and the first version was operational by April 1949; a program written to search for
Mersenne prime In mathematics, a Mersenne prime is a prime number that is one less than a power of two. That is, it is a prime number of the form for some integer . They are named after Marin Mersenne, a French Minim friar, who studied them in the early 17 ...
s ran error-free for nine hours on the night of 16/17 June 1949. The machine's successful operation was widely reported in the British press, which used the phrase "electronic brain" in describing it to their readers. The computer is especially historically significant because of its pioneering inclusion of index registers, an innovation which made it easier for a program to read sequentially through an array of
words A word is a basic element of language that carries an objective or practical meaning, can be used on its own, and is uninterruptible. Despite the fact that language speakers often have an intuitive grasp of what a word is, there is no conse ...
in memory. Thirty-four patents resulted from the machine's development, and many of the ideas behind its design were incorporated in subsequent commercial products such as the and 702 as well as the Ferranti Mark 1. The chief designers, Frederic C. Williams and Tom Kilburn, concluded from their experiences with the Mark 1 that computers would be used more in scientific roles than in pure mathematics. In 1951 they started development work on
Meg Meg is a feminine given name, often a short form of Megatron, Megan, Megumi (Japanese), etc. It may refer to: People *Meg (singer), a Japanese singer *Meg Cabot (born 1967), American author of romantic and paranormal fiction *Meg Burton Cahill ( ...
, the Mark 1's successor, which would include a floating-point unit.


EDSAC

The other contender for being the first recognizably modern digital stored-program computer was the EDSAC, designed and constructed by
Maurice Wilkes Sir Maurice Vincent Wilkes (26 June 1913 – 29 November 2010) was a British computer scientist who designed and helped build the Electronic Delay Storage Automatic Calculator (EDSAC), one of the earliest stored program computers, and who inv ...
and his team at the University of Cambridge Mathematical Laboratory in
England England is a country that is part of the United Kingdom. It shares land borders with Wales to its west and Scotland to its north. The Irish Sea lies northwest and the Celtic Sea to the southwest. It is separated from continental Europe ...
at the
University of Cambridge , mottoeng = Literal: From here, light and sacred draughts. Non literal: From this place, we gain enlightenment and precious knowledge. , established = , other_name = The Chancellor, Masters and Schola ...
in 1949. The machine was inspired by John von Neumann's seminal '' First Draft of a Report on the EDVAC'' and was one of the first usefully operational electronic digital
stored-program A stored-program computer is a computer that stores program instructions in electronically or optically accessible memory. This contrasts with systems that stored the program instructions with plugboards or similar mechanisms. The definition i ...
computer. EDSAC ran its first programs on 6 May 1949, when it calculated a table of squares and a list of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only way ...
s.The EDSAC also served as the basis for the first commercially applied computer, the LEO I, used by food manufacturing company J. Lyons & Co. Ltd. EDSAC 1 was finally shut down on 11 July 1958, having been superseded by EDSAC 2 which stayed in use until 1965.


EDVAC

ENIAC inventors John Mauchly and J. Presper Eckert proposed the EDVAC's construction in August 1944, and design work for the EDVAC commenced at the
University of Pennsylvania The University of Pennsylvania (also known as Penn or UPenn) is a private research university in Philadelphia. It is the fourth-oldest institution of higher education in the United States and is ranked among the highest-regarded universit ...
's Moore School of Electrical Engineering, before the ENIAC was fully operational. The design implemented a number of important architectural and logical improvements conceived during the ENIAC's construction, and a high-speed serial-access memory. However, Eckert and Mauchly left the project and its construction floundered. It was finally delivered to the U.S. Army's
Ballistics Research Laboratory The Ballistic Research Laboratory (BRL) was a leading U.S. Army research establishment situated at Aberdeen Proving Ground, Maryland that specialized in ballistics (interior, exterior, and terminal) as well as vulnerability and lethality analysis. ...
at the Aberdeen Proving Ground in August 1949, but due to a number of problems, the computer only began operation in 1951, and then only on a limited basis.


Commercial computers

The first commercial computer was the Ferranti Mark 1, built by Ferranti and delivered to the University of Manchester in February 1951. It was based on the Manchester Mark 1. The main improvements over the Manchester Mark 1 were in the size of the primary storage (using
random access Random access (more precisely and more generally called direct access) is the ability to access an arbitrary element of a sequence in equal time or any datum from a population of addressable elements roughly as easily and efficiently as any othe ...
Williams tubes The Williams tube, or the Williams–Kilburn tube named after inventors Frederic Calland Williams, Freddie Williams and Tom Kilburn, is an early form of computer memory. It was the first Random-access memory, random-access digital storage devic ...
),
secondary storage Computer data storage is a technology consisting of computer components and recording media that are used to retain digital data. It is a core function and fundamental component of computers. The central processing unit (CPU) of a computer ...
(using a magnetic drum), a faster multiplier, and additional instructions. The basic cycle time was 1.2 milliseconds, and a multiplication could be completed in about 2.16 milliseconds. The multiplier used almost a quarter of the machine's 4,050 vacuum tubes (valves). A second machine was purchased by the University of Toronto, before the design was revised into the Mark 1 Star. At least seven of these later machines were delivered between 1953 and 1957, one of them to Shell labs in Amsterdam. In October 1947, the directors of J. Lyons & Company, a British catering company famous for its teashops but with strong interests in new office management techniques, decided to take an active role in promoting the commercial development of computers. The LEO I computer (Lyons Electronic Office) became operational in April 1951 and ran the world's first regular routine office computer job. On 17 November 1951, the J. Lyons company began weekly operation of a bakery valuations job on the LEO – the first business
application Application may refer to: Mathematics and computing * Application software, computer software designed to help the user to perform specific tasks ** Application layer, an abstraction layer that specifies protocols and interface methods used in a c ...
to go live on a stored program computer. In June 1951, the UNIVAC I (Universal Automatic Computer) was delivered to the U.S. Census Bureau. Remington Rand eventually sold 46 machines at more than each ($ as of ). UNIVAC was the first "mass produced" computer. It used 5,200 vacuum tubes and consumed of power. Its primary storage was serial-access mercury delay lines capable of storing 1,000 words of 11 decimal digits plus sign (72-bit words). IBM introduced a smaller, more affordable computer in 1954 that proved very popular. The IBM 650 weighed over , the attached power supply weighed around and both were held in separate cabinets of roughly 1.50.9. The system cost ($ as of ) or could be leased for a month ($ as of ). Its drum memory was originally 2,000 ten-digit words, later expanded to 4,000 words. Memory limitations such as this were to dominate programming for decades afterward. The program instructions were fetched from the spinning drum as the code ran. Efficient execution using drum memory was provided by a combination of hardware architecture – the instruction format included the address of the next instruction – and software: the Symbolic Optimal Assembly Program, SOAP, assigned instructions to the optimal addresses (to the extent possible by static analysis of the source program). Thus many instructions were, when needed, located in the next row of the drum to be read and additional wait time for drum rotation was reduced.


Microprogramming

In 1951, British scientist
Maurice Wilkes Sir Maurice Vincent Wilkes (26 June 1913 – 29 November 2010) was a British computer scientist who designed and helped build the Electronic Delay Storage Automatic Calculator (EDSAC), one of the earliest stored program computers, and who inv ...
developed the concept of microprogramming from the realisation that the
central processing unit A central processing unit (CPU), also called a central processor, main processor or just processor, is the electronic circuitry that executes instructions comprising a computer program. The CPU performs basic arithmetic, logic, controlling, an ...
of a computer could be controlled by a miniature, highly specialized
computer program A computer program is a sequence or set of instructions in a programming language for a computer to execute. Computer programs are one component of software, which also includes documentation and other intangible components. A computer progra ...
in high-speed ROM. Microprogramming allows the base instruction set to be defined or extended by built-in programs (now called
firmware In computing, firmware is a specific class of computer software that provides the low-level control for a device's specific hardware. Firmware, such as the BIOS of a personal computer, may contain basic functions of a device, and may provide ...
or
microcode In processor design, microcode (μcode) is a technique that interposes a layer of computer organization between the central processing unit (CPU) hardware and the programmer-visible instruction set architecture of a computer. Microcode is a laye ...
). This concept greatly simplified CPU development. He first described this at the University of Manchester Computer Inaugural Conference in 1951, then published in expanded form in ''
IEEE Spectrum ''IEEE Spectrum'' is a magazine edited by the Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers (IEEE) is a 501(c)(3) professional association for electronic engineering and electrical e ...
'' in 1955. It was widely used in the CPUs and floating-point units of
mainframe A mainframe computer, informally called a mainframe or big iron, is a computer used primarily by large organizations for critical applications like bulk data processing for tasks such as censuses, industry and consumer statistics, enterprise ...
and other computers; it was implemented for the first time in
EDSAC 2 EDSAC 2 was an early computer A computer is a machine that can be programmed to Execution (computing), carry out sequences of arithmetic or logical operations (computation) automatically. Modern digital electronic computers can perform gene ...
, which also used multiple identical "bit slices" to simplify design. Interchangeable, replaceable tube assemblies were used for each bit of the processor.


Magnetic memory

Magnetic drum memories were developed for the US Navy during WW II with the work continuing at Engineering Research Associates (ERA) in 1946 and 1947. ERA, then a part of Univac included a drum memory in its
1103 Year 1103 ( MCIII) was a common year starting on Thursday (link will display the full calendar) of the Julian calendar. Events By place Levant * Spring – Bohemond I, Norman prince of Antioch, is released from Seljuk imprison ...
, announced in February 1953. The first mass-produced computer, the IBM 650, also announced in 1953 had about 8.5 kilobytes of drum memory.
Magnetic core A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, in ...
memory patented in 1949 with its first usage demonstrated for the Whirlwind computer in August 1953. Commercialization followed quickly. Magnetic core was used in peripherals of the IBM 702 delivered in July 1955, and later in the 702 itself. The IBM 704 (1955) and the Ferranti Mercury (1957) used magnetic-core memory. It went on to dominate the field into the 1970s, when it was replaced with semiconductor memory. Magnetic core peaked in volume about 1975 and declined in usage and market share thereafter. As late as 1980, PDP-11/45 machines using magnetic-core main memory and drums for swapping were still in use at many of the original UNIX sites.


Early digital computer characteristics


Transistor computers

The bipolar transistor was invented in 1947. From 1955 onward transistors replaced
vacuum tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric voltage, potential difference has been applied. The type kn ...
s in computer designs, giving rise to the "second generation" of computers. Compared to vacuum tubes, transistors have many advantages: they are smaller, and require less power than vacuum tubes, so give off less heat. Silicon junction transistors were much more reliable than vacuum tubes and had longer service life. Transistorized computers could contain tens of thousands of binary logic circuits in a relatively compact space. Transistors greatly reduced computers' size, initial cost, and operating cost. Typically, second-generation computers were composed of large numbers of
printed circuit board A printed circuit board (PCB; also printed wiring board or PWB) is a medium used in Electrical engineering, electrical and electronic engineering to connect electronic components to one another in a controlled manner. It takes the form of a L ...
s such as the IBM Standard Modular System, each carrying one to four
logic gate A logic gate is an idealized or physical device implementing a Boolean function, a logical operation performed on one or more binary inputs that produces a single binary output. Depending on the context, the term may refer to an ideal logic gate, ...
s or flip-flops. At the University of Manchester, a team under the leadership of Tom Kilburn designed and built a machine using the newly developed transistors instead of valves. Initially the only devices available were germanium
point-contact transistor The point-contact transistor was the first type of transistor to be successfully demonstrated. It was developed by research scientists John Bardeen and Walter Brattain at Bell Laboratories in December 1947. They worked in a group led by physicis ...
s, less reliable than the valves they replaced but which consumed far less power. Their first
transistorized computer A transistor computer, now often called a second-generation computer, is a computer which uses discrete transistors instead of vacuum tubes. The first generation of electronic computers used vacuum tubes, which generated large amounts of heat, ...
, and the first in the world, was operational by 1953, and a second version was completed there in April 1955. The 1955 version used 200 transistors, 1,300
solid-state Solid state, or solid matter, is one of the four fundamental states of matter. Solid state may also refer to: Electronics * Solid-state electronics, circuits built of solid materials * Solid state ionics, study of ionic conductors and their ...
diodes, and had a power consumption of 150 watts. However, the machine did make use of valves to generate its 125 kHz clock waveforms and in the circuitry to read and write on its magnetic drum memory, so it was not the first completely transistorized computer. That distinction goes to the Harwell CADET of 1955, built by the electronics division of the Atomic Energy Research Establishment at Harwell. The design featured a 64-kilobyte magnetic drum memory store with multiple moving heads that had been designed at the National Physical Laboratory, UK. By 1953 this team had transistor circuits operating to read and write on a smaller magnetic drum from the Royal Radar Establishment. The machine used a low clock speed of only 58 kHz to avoid having to use any valves to generate the clock waveforms. CADET used 324-point-contact transistors provided by the UK company Standard Telephones and Cables; 76 junction transistors were used for the first stage amplifiers for data read from the drum, since point-contact transistors were too noisy. From August 1956 CADET was offering a regular computing service, during which it often executed continuous computing runs of 80 hours or more. Problems with the reliability of early batches of point contact and alloyed junction transistors meant that the machine's mean time between failures was about 90 minutes, but this improved once the more reliable bipolar junction transistors became available. The Manchester University Transistor Computer's design was adopted by the local engineering firm of Metropolitan-Vickers in their Metrovick 950, the first commercial transistor computer anywhere. Six Metrovick 950s were built, the first completed in 1956. They were successfully deployed within various departments of the company and were in use for about five years. A second generation computer, the IBM 1401, captured about one third of the world market. IBM installed more than ten thousand 1401s between 1960 and 1964.


Transistor peripherals

Transistorized electronics improved not only the CPU (Central Processing Unit), but also the peripheral devices. The second generation disk data storage units were able to store tens of millions of letters and digits. Next to the
fixed disk A hard disk drive (HDD), hard disk, hard drive, or fixed disk is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magne ...
storage units, connected to the CPU via high-speed data transmission, were removable disk data storage units. A removable
disk pack Disk packs and disk cartridges were early forms of removable media for computer data storage, introduced in the 1960s. Disk pack A disk pack is a layered grouping of hard disk platters (circular, rigid discs coated with a magnetic data storage ...
can be easily exchanged with another pack in a few seconds. Even if the removable disks' capacity is smaller than fixed disks, their interchangeability guarantees a nearly unlimited quantity of data close at hand.
Magnetic tape Magnetic tape is a medium for magnetic storage made of a thin, magnetizable coating on a long, narrow strip of plastic film. It was developed in Germany in 1928, based on the earlier magnetic wire recording from Denmark. Devices that use magne ...
provided archival capability for this data, at a lower cost than disk. Many second-generation CPUs delegated peripheral device communications to a secondary processor. For example, while the communication processor controlled card reading and punching, the main CPU executed calculations and binary branch instructions. One databus would bear data between the main CPU and core memory at the CPU's fetch-execute cycle rate, and other databusses would typically serve the peripheral devices. On the PDP-1, the core memory's cycle time was 5 microseconds; consequently most arithmetic instructions took 10 microseconds (100,000 operations per second) because most operations took at least two memory cycles; one for the instruction, one for the operand data fetch. During the second generation remote terminal units (often in the form of
Teleprinter A teleprinter (teletypewriter, teletype or TTY) is an electromechanical device that can be used to send and receive typed messages through various communications channels, in both point-to-point (telecommunications), point-to-point and point- ...
s like a Friden Flexowriter) saw greatly increased use. Telephone connections provided sufficient speed for early remote terminals and allowed hundreds of kilometers separation between remote-terminals and the computing center. Eventually these stand-alone computer networks would be generalized into an interconnected '' network of networks''—the Internet.


Transistor supercomputers

The early 1960s saw the advent of
supercomputing A supercomputer is a computer with a high level of performance as compared to a general-purpose computer. The performance of a supercomputer is commonly measured in floating-point operations per second (FLOPS) instead of million instructions ...
. The
Atlas An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geograp ...
was a joint development between the University of Manchester, Ferranti, and Plessey, and was first installed at Manchester University and officially commissioned in 1962 as one of the world's first supercomputers – considered to be the most powerful computer in the world at that time. It was said that whenever Atlas went offline half of the United Kingdom's computer capacity was lost. It was a second-generation machine, using discrete germanium transistors. Atlas also pioneered the Atlas Supervisor, "considered by many to be the first recognisable modern
operating system An operating system (OS) is system software that manages computer hardware, software resources, and provides common daemon (computing), services for computer programs. Time-sharing operating systems scheduler (computing), schedule tasks for ef ...
". In the US, a series of computers at Control Data Corporation (CDC) were designed by
Seymour Cray Seymour Roger Cray (September 28, 1925 – October 5, 1996
) was an American
CDC 6600 The CDC 6600 was the flagship of the 6000 series of mainframe computer systems manufactured by Control Data Corporation. Generally considered to be the first successful supercomputer, it outperformed the industry's prior recordholder, the IBM ...
, released in 1964, is generally considered the first supercomputer. The CDC 6600 outperformed its predecessor, the IBM 7030 Stretch, by about a factor of 3. With performance of about 1 
megaFLOPS In computing, floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate meas ...
, the CDC 6600 was the world's fastest computer from 1964 to 1969, when it relinquished that status to its successor, the CDC 7600.


Integrated circuit computers

The "third-generation" of digital electronic computers used integrated circuit (IC) chips as the basis of their logic. The idea of an integrated circuit was conceived by a radar scientist working for the Royal Radar Establishment of the
Ministry of Defence {{unsourced, date=February 2021 A ministry of defence or defense (see spelling differences), also known as a department of defence or defense, is an often-used name for the part of a government responsible for matters of defence, found in states ...
,
Geoffrey W.A. Dummer Geoffrey William Arnold Dummer, MBE (1945), C. Eng., IEE Premium Award, FIEEE, MIEE, USA Medal of Freedom with Bronze Palm (25 February 1909 – 9 September 2002) was an English electronics engineer and consultant, who is credited as bei ...
. The first working integrated circuits were invented by Jack Kilby at Texas Instruments and
Robert Noyce Robert Norton Noyce (December 12, 1927 – June 3, 1990), nicknamed "the Mayor of Silicon Valley", was an American physicist and entrepreneur who co-founded Fairchild Semiconductor in 1957 and Intel Corporation in 1968. He is also credited wit ...
at Fairchild Semiconductor. Kilby recorded his initial ideas concerning the integrated circuit in July 1958, successfully demonstrating the first working integrated example on 12 September 1958.''The Chip that Jack Built''
(c. 2008), (HTML), Texas Instruments, Retrieved 29 May 2008.
Kilby's invention was a hybrid integrated circuit (hybrid IC). It had external wire connections, which made it difficult to mass-produce. Noyce came up with his own idea of an integrated circuit half a year after Kilby. Noyce's invention was a monolithic integrated circuit (IC) chip. His chip solved many practical problems that Kilby's had not. Produced at Fairchild Semiconductor, it was made of silicon, whereas Kilby's chip was made of germanium. The basis for Noyce's monolithic IC was Fairchild's
planar process The planar process is a manufacturing process used in the semiconductor industry to build individual components of a transistor, and in turn, connect those transistors together. It is the primary process by which silicon integrated circuit chips a ...
, which allowed integrated circuits to be laid out using the same principles as those of printed circuits. The planar process was developed by Noyce's colleague Jean Hoerni in early 1959, based on Mohamed M. Atalla's work on semiconductor surface passivation by silicon dioxide at
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
in the late 1950s. Third generation (integrated circuit) computers first appeared in the early 1960s in computers developed for government purposes, and then in commercial computers beginning in the mid-1960s. The first silicon IC computer was the Apollo Guidance Computer or AGC. Although not the most powerful computer of its time, the extreme constraints on size, mass, and power of the Apollo spacecraft required the AGC to be much smaller and denser than any prior computer, weighing in at only . Each lunar landing mission carried two AGCs, one each in the command and lunar ascent modules.


Semiconductor memory

The
MOSFET The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
(metal-oxide-semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed M. Atalla and Dawon Kahng at
Bell Labs Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
in 1959. In addition to data processing, the MOSFET enabled the practical use of MOS transistors as memory cell storage elements, a function previously served by magnetic cores.
Semiconductor memory Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a sili ...
, also known as MOS memory, was cheaper and consumed less power than magnetic-core memory. MOS
random-access memory Random-access memory (RAM; ) is a form of computer memory that can be read and changed in any order, typically used to store working data and machine code. A random-access memory device allows data items to be read or written in almost t ...
(RAM), in the form of
static RAM Static random-access memory (static RAM or SRAM) is a type of random-access memory (RAM) that uses latching circuitry (flip-flop) to store each bit. SRAM is volatile memory; data is lost when power is removed. The term ''static'' differen ...
(SRAM), was developed by John Schmidt at Fairchild Semiconductor in 1964. In 1966, Robert Dennard at the IBM Thomas J. Watson Research Center developed MOS dynamic RAM (DRAM). In 1967, Dawon Kahng and Simon Sze at Bell Labs developed the floating-gate MOSFET, the basis for MOS
non-volatile memory Non-volatile memory (NVM) or non-volatile storage is a type of computer memory that can retain stored information even after power is removed. In contrast, volatile memory needs constant power in order to retain data. Non-volatile memory typ ...
such as EPROM, EEPROM and flash memory.


Microprocessor computers

The "fourth-generation" of digital electronic computers used microprocessors as the basis of their logic. The microprocessor has origins in the MOS integrated circuit (MOS IC) chip. Due to rapid
MOSFET scaling The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET) is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which d ...
, MOS IC chips rapidly increased in complexity at a rate predicted by
Moore's law Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years. Moore's law is an observation and projection of a historical trend. Rather than a law of physics, it is an empir ...
, leading to large-scale integration (LSI) with hundreds of transistors on a single MOS chip by the late 1960s. The application of MOS LSI chips to
computing Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, ...
was the basis for the first microprocessors, as engineers began recognizing that a complete computer processor could be contained on a single MOS LSI chip. The subject of exactly which device was the first microprocessor is contentious, partly due to lack of agreement on the exact definition of the term "microprocessor". The earliest multi-chip microprocessors were the Four-Phase Systems AL-1 in 1969 and Garrett AiResearch MP944 in 1970, developed with multiple MOS LSI chips. The first single-chip microprocessor was the Intel 4004, developed on a single PMOS LSI chip. It was designed and realized by Ted Hoff, Federico Faggin, Masatoshi Shima and
Stanley Mazor Stanley Mazor is an American microelectronics engineer who was born on 22 October 1941 in Chicago, Illinois. He is one of the co-inventors of the world's first microprocessor architecture, the Intel 4004, together with Ted Hoff, Masatoshi Shima ...
at Intel, and released in 1971. Tadashi Sasaki and Masatoshi Shima at Busicom, a calculator manufacturer, had the initial insight that the CPU could be a single MOS LSI chip, supplied by Intel.William Aspray (May 25, 1994) Oral-History: Tadashi Sasaki
Sasaki credits the idea for a 4 bit-slice PMOS chip to a woman researcher's idea at Sharp Corporation, which was not accepted by the other members of the Sharp brainstorming group. A 40-million yen infusion from Busicom to Intel was made at Sasaki's behest, to exploit the 4 bit-slice PMOS chip.
While the earliest microprocessor ICs literally contained only the processor, i.e. the central processing unit, of a computer, their progressive development naturally led to chips containing most or all of the internal electronic parts of a computer. The integrated circuit in the image on the right, for example, an Intel 8742, is an 8-bit
microcontroller A microcontroller (MCU for ''microcontroller unit'', often also MC, UC, or μC) is a small computer on a single VLSI integrated circuit (IC) chip. A microcontroller contains one or more CPUs (processor cores) along with memory and programmable i ...
that includes a CPU running at 12 MHz, 128 bytes of RAM, 2048 bytes of EPROM, and I/O in the same chip. During the 1960s there was considerable overlap between second and third generation technologies. IBM implemented its IBM Solid Logic Technology modules in hybrid circuits for the IBM System/360 in 1964. As late as 1975, Sperry Univac continued the manufacture of second-generation machines such as the UNIVAC 494. The Burroughs large systems such as the B5000 were
stack machine In computer science, computer engineering and programming language implementations, a stack machine is a computer processor or a virtual machine in which the primary interaction is moving short-lived temporary values to and from a push down st ...
s, which allowed for simpler programming. These pushdown automatons were also implemented in minicomputers and microprocessors later, which influenced programming language design. Minicomputers served as low-cost computer centers for industry, business and universities. It became possible to simulate analog circuits with the ''simulation program with integrated circuit emphasis'', or SPICE (1971) on minicomputers, one of the programs for electronic design automation ( EDA). The microprocessor led to the development of
microcomputer A microcomputer is a small, relatively inexpensive computer having a central processing unit (CPU) made out of a microprocessor. The computer also includes memory and input/output (I/O) circuitry together mounted on a printed circuit board (PC ...
s, small, low-cost computers that could be owned by individuals and small businesses. Microcomputers, the first of which appeared in the 1970s, became ubiquitous in the 1980s and beyond. While which specific product is considered the first microcomputer system is a matter of debate, one of the earliest is R2E's Micral N ( François Gernelle, André Truong) launched "early 1973" using the Intel 8008. The first commercially available microcomputer kit was the Intel 8080-based Altair 8800, which was announced in the January 1975 cover article of '' Popular Electronics''. However, the Altair 8800 was an extremely limited system in its initial stages, having only 256 bytes of DRAM in its initial package and no input-output except its toggle switches and LED register display. Despite this, it was initially surprisingly popular, with several hundred sales in the first year, and demand rapidly outstripped supply. Several early third-party vendors such as Cromemco and Processor Technology soon began supplying additional S-100 bus hardware for the Altair 8800. In April 1975 at the Hannover Fair, Olivetti presented the P6060, the world's first complete, pre-assembled personal computer system. The central processing unit consisted of two cards, code named PUCE1 and PUCE2, and unlike most other personal computers was built with TTL components rather than a microprocessor. It had one or two 8" floppy disk drives, a 32-character
plasma display A plasma display panel (PDP) is a type of flat panel display that uses small cells containing Plasma (physics), plasma: ionized gas that responds to electric fields. Plasma televisions were the first large (over 32 inches diagonal) flat panel displ ...
, 80-column graphical thermal printer, 48 Kbytes of RAM, and
BASIC BASIC (Beginners' All-purpose Symbolic Instruction Code) is a family of general-purpose, high-level programming languages designed for ease of use. The original version was created by John G. Kemeny and Thomas E. Kurtz at Dartmouth College ...
language. It weighed . As a complete system, this was a significant step from the Altair, though it never achieved the same success. It was in competition with a similar product by IBM that had an external floppy disk drive. From 1975 to 1977, most microcomputers, such as the MOS Technology KIM-1, the Altair 8800, and some versions of the Apple I, were sold as kits for do-it-yourselfers. Pre-assembled systems did not gain much ground until 1977, with the introduction of the Apple II, the Tandy TRS-80, the first SWTPC computers, and the Commodore PET. Computing has evolved with microcomputer architectures, with features added from their larger brethren, now dominant in most market segments. A NeXT Computer and its object-oriented development tools and libraries were used by
Tim Berners-Lee Sir Timothy John Berners-Lee (born 8 June 1955), also known as TimBL, is an English computer scientist best known as the inventor of the World Wide Web. He is a Professorial Fellow of Computer Science at the University of Oxford and a profess ...
and Robert Cailliau at CERN to develop the world's first
web server A web server is computer software and underlying hardware that accepts requests via HTTP (the network protocol created to distribute web content) or its secure variant HTTPS. A user agent, commonly a web browser or web crawler, initiate ...
software, CERN httpd, and also used to write the first web browser, WorldWideWeb. Systems as complicated as computers require very high reliability engineering, reliability. ENIAC remained on, in continuous operation from 1947 to 1955, for eight years before being shut down. Although a vacuum tube might fail, it would be replaced without bringing down the system. By the simple strategy of never shutting down ENIAC, the failures were dramatically reduced. The vacuum-tube Semi-Automatic Ground Environment, SAGE air-defense computers became remarkably reliable – installed in pairs, one off-line, tubes likely to fail did so when the computer was intentionally run at reduced power to find them. Hot plugging, Hot-pluggable hard disks, like the hot-pluggable vacuum tubes of yesteryear, continue the tradition of repair during continuous operation. Semiconductor memories routinely have no errors when they operate, although operating systems like Unix have employed memory tests on start-up to detect failing hardware. Today, the requirement of reliable performance is made even more stringent when server farms are the delivery platform. Google has managed this by using fault-tolerant software to recover from hardware failures, and is even working on the concept of replacing entire server farms on-the-fly, during a service event. In the 21st century, multi-core CPUs became commercially available. Content-addressable memory (CAM) has become inexpensive enough to be used in networking, and is frequently used for on-chip cache memory in modern microprocessors, although no computer system has yet implemented hardware CAMs for use in programming languages. Currently, CAMs (or associative arrays) in software are programming-language-specific. Semiconductor memory cell arrays are very regular structures, and manufacturers prove their processes on them; this allows price reductions on memory products. During the 1980s, CMOS logic gates developed into devices that could be made as fast as other circuit types; computer power consumption could therefore be decreased dramatically. Unlike the continuous current draw of a gate based on other logic types, a CMOS gate only draws significant current during the 'transition' between logic states, except for leakage. CMOS circuits have allowed computing to become a commodity which is now ubiquitous, embedded in embedded system, many forms, from greeting cards and Mobile phone, telephones to Satellite communications#History, satellites. The thermal design power which is dissipated during operation has become as essential as computing speed of operation. In 2006 servers consumed 1.5% of the total energy budget of the U.S. The energy consumption of computer data centers was expected to double to 3% of world consumption by 2011. The System on a chip, SoC (system on a chip) has compressed even more of the integrated circuitry into a single chip; SoCs are enabling phones and PCs to converge into single hand-held wireless mobile computer, mobile devices. Quantum computing is an emerging technology in the field of computing. ''MIT Technology Review'' reported 10 November 2017 that IBM has created a 50-qubit computer; currently its quantum state lasts 50 microseconds. Google researchers have been able to extend the 50 microsecond time limit, as reported 14 July 2021 in ''Nature''; stability has been extended 100-fold by spreading a single logical qubit over chains of data qubits for quantum error correction.Julian Kelly, et.al. (16 July 2021) Exponential suppression of bit or phase errors with cyclic error correction
as cited in ''Science magazine'
Physicists Move Closer To Defeating Errors In Quantum Computation
/ref> ''Physical Review X'' reported a technique for 'single-gate sensing as a viable readout method for spin qubits' (a singlet-triplet spin state in silicon) on 26 November 2018. A Google team has succeeded in operating their RF pulse modulator chip at 3 Kelvin, simplifying the cryogenics of their 72-qubit computer, which is set up to operate at 0.3 Kelvin; but the readout circuitry and another driver remain to be brought into the cryogenics. ''See: Quantum supremacy'' Silicon qubit systems have demonstrated quantum entanglement, entanglement at action at a distance, non-local distances. Computing hardware and its software have even become a metaphor for the operation of the universe.


Epilogue

An indication of the rapidity of development of this field can be inferred from the history of the seminal 1947 article by Burks, Goldstine and von Neumann. By the time that anyone had time to write anything down, it was obsolete. After 1945, others read John von Neumann's ''First Draft of a Report on the EDVAC'', and immediately started implementing their own systems. To this day, the rapid pace of development has continued, worldwide.''DBLP'' summarizes th
''Annals of the History of Computing''
year by year, back to 1995, so far.


See also

* Antikythera mechanism * History of computing * History of computing hardware (1960s–present) * History of laptops * History of personal computers * History of software * Information Age * IT History Society * Retrocomputing * Timeline of computing * List of pioneers in computer science * Vacuum-tube computer


Notes


References

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * With notes upon the Memoir by the Translator. * German to English translation, M.I.T., 1969. * * * Noyce, Robert * * * * * * * * * * * * * * Pages 220–226 are annotated references and guide for further reading. * * * Stibitz, George * * (and ) Other online versions
Proceedings of the London Mathematical SocietyAnother link online.
* * * * Wang, An * * * * * *


Further reading

* *
Computers and Automation
Magazine – Pictorial Report on the Computer Field: ** ''A PICTORIAL INTRODUCTION TO COMPUTERS'' �
06/1957
** ''A PICTORIAL MANUAL ON COMPUTERS'' �
12/1957
** ''A PICTORIAL MANUAL ON COMPUTERS, Part 2'' �
01/1958
** 1958–1967 Pictorial Report on the Computer Field – December issues
195812.pdf, ..., 196712.pdf
* ''Bit by Bit: An Illustrated History of Computers'', Stan Augarten, 1984
OCR with permission of the author


External links


Obsolete Technology – Old Computers

History of calculating technology





Computer History
— a collection of articles by Bob Bemer
25 Microchips that shook the world
(archived) – a collection of articles by the Institute of Electrical and Electronics Engineers
Columbia University Computing History

Computer Histories
– An introductory course on the history of computing
Revolution – The First 2000 Years Of Computing
Computer History Museum {{Basic computer components History of computing hardware, Early computers, One-of-a-kind computers, *01 History of computing