HOME

TheInfoList



OR:

In
mathematical optimization Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfi ...
, Himmelblau's function is a multi-modal function, used to test the performance of optimization algorithms. The function is defined by: : f(x, y) = (x^2+y-11)^2 + (x+y^2-7)^2.\quad It has one local maximum at x = -0.270845 and y = -0.923039 where f(x,y) = 181.617 , and four identical local minima: * f(3.0, 2.0) = 0.0, \quad * f(-2.805118, 3.131312) = 0.0, \quad * f(-3.779310, -3.283186) = 0.0, \quad * f(3.584428, -1.848126) = 0.0. \quad The locations of all the minima can be found analytically. However, because they are roots of
cubic polynomial In mathematics, a cubic function is a function of the form f(x)=ax^3+bx^2+cx+d where the coefficients , , , and are complex numbers, and the variable takes real values, and a\neq 0. In other words, it is both a polynomial function of degree ...
s, when written in terms of radicals, the expressions are somewhat complicated. The function is named after David Mautner Himmelblau (1924–2011), who introduced it.


See also

*
Test functions for optimization In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as: * Convergence rate. * Precision. * Robustness. * General performance. Here some test functions are ...


References

Mathematical optimization {{mathanalysis-stub