HOME

TheInfoList



OR:

The Hildebrand solubility parameter (δ) provides a numerical estimate of the degree of interaction between materials and can be a good indication of
solubility In chemistry, solubility is the ability of a chemical substance, substance, the solute, to form a solution (chemistry), solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form su ...
, particularly for nonpolar materials such as many
polymer A polymer () is a chemical substance, substance or material that consists of very large molecules, or macromolecules, that are constituted by many repeat unit, repeating subunits derived from one or more species of monomers. Due to their br ...
s. Materials with similar values of δ are likely to be
miscible Miscibility () is the property of two substances to mix in all proportions (that is, to fully dissolve in each other at any concentration), forming a homogeneous mixture (a solution). Such substances are said to be miscible (etymologically ...
.


Definition

The Hildebrand solubility parameter is the
square root In mathematics, a square root of a number is a number such that y^2 = x; in other words, a number whose ''square'' (the result of multiplying the number by itself, or y \cdot y) is . For example, 4 and −4 are square roots of 16 because 4 ...
of the cohesive
energy density In physics, energy density is the quotient between the amount of energy stored in a given system or contained in a given region of space and the volume of the system or region considered. Often only the ''useful'' or extractable energy is measure ...
: : \delta = \sqrt. The cohesive energy density is the amount of
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
needed to completely remove a unit volume of
molecule A molecule is a group of two or more atoms that are held together by Force, attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemi ...
s from their neighbours to infinite separation (an
ideal gas An ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is ...
). This is equal to the
heat of vaporization In thermodynamics, the enthalpy of vaporization (symbol ), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to Phase transition, transform a qua ...
of the compound divided by its
molar volume In chemistry and related fields, the molar volume, symbol ''V''m, or \tilde V of a substance is the ratio of the volume (''V'') occupied by a substance to the amount of substance (''n''), usually at a given temperature and pressure. It is also eq ...
in the condensed phase. In order for a material to dissolve, these same interactions need to be overcome, as the molecules are separated from each other and surrounded by the solvent. In 1936 Joel Henry Hildebrand suggested the square root of the cohesive energy density as a numerical value indicating solvency behavior. This later became known as the "Hildebrand solubility parameter". Materials with similar solubility parameters will be able to interact with each other, resulting in
solvation Solvations describes the interaction of a solvent with dissolved molecules. Both ionized and uncharged molecules interact strongly with a solvent, and the strength and nature of this interaction influence many properties of the solute, includi ...
, miscibility or swelling.


Uses and limitations

Its principal utility is that it provides simple predictions of phase equilibrium based on a single parameter that is readily obtained for most materials. These predictions are often useful for nonpolar and slightly polar ( dipole moment < 2 debyes) systems without hydrogen bonding. It has found particular use in predicting solubility and swelling of polymers by solvents. More complicated three-dimensional solubility parameters, such as Hansen solubility parameters, have been proposed for polar molecules. The principal limitation of the solubility parameter approach is that it applies only to associated solutions ("like dissolves like" or, technically speaking, positive deviations from
Raoult's law Raoult's law ( law) is a relation of physical chemistry, with implications in thermodynamics. Proposed by French chemist François-Marie Raoult in 1887, it states that the partial pressure of each component of an ideal mixture of ''liquids'' is ...
); it cannot account for negative deviations from Raoult's law that result from effects such as solvation or the formation of electron donor–acceptor complexes. Like any simple predictive theory, it can inspire overconfidence; it is best used for screening with data used to verify the predictions.


Units

The conventional units for the solubility parameter are (
calories The calorie is a unit of energy that originated from the caloric theory of heat. The large calorie, food calorie, dietary calorie, kilocalorie, or kilogram calorie is defined as the amount of heat needed to raise the temperature of one liter o ...
per cm3)1/2, or cal1/2 cm−3/2. The
SI units The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official st ...
are J1/2 m−3/2, equivalent to the pascal1/2. 1 calorie is equal to 4.184 J. 1 cal1/2 cm−3/2 = (523/125 J)1/2 (10−2 m)−3/2 = (4.184 J)1/2 (0.01 m)−3/2 = 2.045483 103 J1/2 m−3/2 = 2.045483 (106 J/m3)1/2= 2.045483 MPa1/2. Given the non-exact nature of the use of δ, it is often sufficient to say that the number in MPa1/2 is about twice the number in cal1/2 cm−3/2. Where the units are not given, for example, in older books, it is usually safe to assume the non-SI unit.


Examples

From the table, poly(ethylene) has a solubility parameter of 7.9 cal1/2 cm−3/2. Good solvents are likely to be
diethyl ether Diethyl ether, or simply ether, is an organic compound with the chemical formula , sometimes abbreviated as . It is a colourless, highly Volatility (chemistry), volatile, sweet-smelling ("ethereal odour"), extremely flammable liquid. It belongs ...
and
hexane Hexane () or ''n''-hexane is an organic compound, a straight-chain alkane with six carbon atoms and the molecular formula C6H14. Hexane is a colorless liquid, odorless when pure, and with a boiling point of approximately . It is widely used as ...
. (However, PE only dissolves at temperatures well above 100 °C.) Poly(styrene) has a solubility parameter of 9.1 cal1/2 cm−3/2, and thus ethyl acetate is likely to be a good solvent. Nylon 6,6 has a solubility parameter of 13.7 cal1/2 cm−3/2, and ethanol is likely to be the best solvent of those tabulated. However, the latter is polar, and thus we should be very cautions about using just the Hildebrand solubility parameter to make predictions.


See also

*
Solvent A solvent (from the Latin language, Latin ''wikt:solvo#Latin, solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a Solution (chemistry), solution. A solvent is usually a liquid but can also be a solid, a gas ...
* Hansen solubility parameters


References


Notes


Bibliography


External links

* * Abboud J.-L. M., Notario R. (1999
Critical compilation of scales of solvent parameters. part I. pure, non-hydrogen bond donor solvents – technical report
Pure Appl. Chem. 71(4), 645–718 (IUPAC document with large table (1b) of Hildebrand solubility parameter (δH)) {{DEFAULTSORT:Hildebrand Solubility Parameter Polymer chemistry 1936 introductions