
Hilbert's problems are 23 problems in
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
published by German mathematician
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician and philosopher of mathematics and one of the most influential mathematicians of his time.
Hilbert discovered and developed a broad range of fundamental idea ...
in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems (1, 2, 6, 7, 8, 13, 16, 19, 21, and 22) at the
Paris
Paris () is the Capital city, capital and List of communes in France with over 20,000 inhabitants, largest city of France. With an estimated population of 2,048,472 residents in January 2025 in an area of more than , Paris is the List of ci ...
conference of the
International Congress of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU).
The Fields Medals, the IMU Abacus Medal (known before ...
, speaking on August 8 at the
Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by
Mary Frances Winston Newson in the ''
Bulletin of the American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society.
Scope
It publishes surveys on contemporary research topics, written at a level accessible to non-experts. ...
''.
[
] Earlier publications (in the original German) appeared in ''Archiv der Mathematik und Physik''.
[ and ]
Of the cleanly formulated Hilbert problems, numbers 3, 7, 10, 14, 17, 18, 19, 21, and 20 have resolutions that are accepted by consensus of the mathematical community. Problems 1, 2, 5, 6, 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the
Riemann hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
), 13 and 16 unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in this class.
List of Hilbert's Problems
The following are the headers for Hilbert's 23 problems as they appeared in the 1902 translation in the
Bulletin of the American Mathematical Society
The ''Bulletin of the American Mathematical Society'' is a quarterly mathematical journal published by the American Mathematical Society.
Scope
It publishes surveys on contemporary research topics, written at a level accessible to non-experts. ...
.
[
:1. Cantor's problem of the cardinal number of the continuum.
:2. The compatibility of the arithmetical axioms.
:3. The equality of the volumes of two tetrahedra of equal bases and equal altitudes.
:4. Problem of the straight line as the shortest distance between two points.
:5. Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group.
:6. Mathematical treatment of the axioms of physics.
:7. Irrationality and transcendence of certain numbers.
:8. Problems of prime numbers (The "]Riemann Hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure ...
").
:9. Proof of the most general law of reciprocity in any number field.
:10. Determination of the solvability of a Diophantine equation ''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name:
*Diophantine approximation
In number theory, the study of Diophantine approximation deals with the approximation of real n ...
.
:11. Quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example,
4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong t ...
s with any algebraic numerical coefficients
:12. Extensions of Kronecker's theorem on Abelian fields to any algebraic realm of rationality
:13. Impossibility of the solution of the general equation of 7th degree by means of functions of only two arguments.
:14. Proof of the finiteness of certain complete systems of functions.
:15. Rigorous foundation of Schubert's enumerative calculus.
:16. Problem of the topology of algebraic curves and surfaces.
:17. Expression of definite forms by squares.
:18. Building up of space from congruent polyhedra.
:19. Are the solutions of regular problems in the calculus of variations always necessarily analytic?
:20. The general problem of boundary values (Boundary value problems in PD)
:21. Proof of the existence of linear differential equations having a prescribed monodromy
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of ''mono ...
group.
:22. Uniformization of analytic relations by means of automorphic functions.
:23. Further development of the methods of the calculus of variations.
The 24th problem
Hilbert originally included 24 problems on his list, but decided against including one of them in the published list. The "24th problem" (in proof theory
Proof theory is a major branchAccording to , proof theory is one of four domains mathematical logic, together with model theory, axiomatic set theory, and recursion theory. consists of four corresponding parts, with part D being about "Proof The ...
, on a criterion for simplicity
Simplicity is the state or quality of being wikt:simple, simple. Something easy to understand or explain seems simple, in contrast to something complicated. Alternatively, as Herbert A. Simon suggests, something is simple or Complexity, complex ...
and general methods) was rediscovered in Hilbert's original manuscript notes by German historian Rüdiger Thiele in 2000.
Nature and influence of the problems
Hilbert's problems ranged greatly in topic and precision. Some of them, like the 3rd problem, which was the first to be solved, or the 8th problem (the Riemann hypothesis), which still remains unresolved, were presented precisely enough to enable a clear affirmative or negative answer. For other problems, such as the 5th, experts have traditionally agreed on a single interpretation, and a solution to the accepted interpretation has been given, but closely related unsolved problems exist. Some of Hilbert's statements were not precise enough to specify a particular problem, but were suggestive enough that certain problems of contemporary nature seem to apply; for example, most modern number theorists
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions. Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example ...
would probably see the 9th problem as referring to the conjectural Langlands correspondence on representations of the absolute Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
of a number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a ...
. Still other problems, such as the 11th and the 16th, concern what are now flourishing mathematical subdisciplines, like the theories of quadratic form
In mathematics, a quadratic form is a polynomial with terms all of degree two (" form" is another name for a homogeneous polynomial). For example,
4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong t ...
s and real algebraic curve In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomi ...
s.
There are two problems that are not only unresolved but may in fact be unresolvable by modern standards. The 6th problem concerns the axiomatization
In mathematics and logic, an axiomatic system is a set of formal statements (i.e. axioms) used to logically derive other statements such as lemmas or theorems. A proof within an axiom system is a sequence of deductive steps that establishes ...
of physics
Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, a goal that 20th-century developments seem to render both more remote and less important than in Hilbert's time. Also, the 4th problem concerns the foundations of geometry
Foundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometry, non-Euclidean geometries. These are fundamental to the study and of hist ...
, in a manner that is now generally judged to be too vague to enable a definitive answer.
The 23rd problem was purposefully set as a general indication by Hilbert to highlight the calculus of variations as an underappreciated and understudied field. In the lecture introducing these problems, Hilbert made the following introductory remark to the 23rd problem:
The other 21 problems have all received significant attention, and late into the 20th century work on these problems was still considered to be of the greatest importance. Paul Cohen
Paul Joseph Cohen (April 2, 1934 – March 23, 2007) was an American mathematician, best known for his proofs that the continuum hypothesis and the axiom of choice are independent from Zermelo–Fraenkel set theory, for which he was awarded a F ...
received the Fields Medal
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
in 1966 for his work on the first problem, and the negative solution of the tenth problem in 1970 by Yuri Matiyasevich
Yuri Vladimirovich Matiyasevich (; born 2 March 1947 in Leningrad
Saint Petersburg, formerly known as Petrograd and later Leningrad, is the List of cities and towns in Russia by population, second-largest city in Russia after Moscow. It is ...
(completing work by Julia Robinson, Hilary Putnam
Hilary Whitehall Putnam (; July 31, 1926 – March 13, 2016) was an American philosopher, mathematician, computer scientist, and figure in analytic philosophy in the second half of the 20th century. He contributed to the studies of philosophy of ...
, and Martin Davis) generated similar acclaim. Aspects of these problems are still of great interest today.
Knowability
Following Gottlob Frege
Friedrich Ludwig Gottlob Frege (; ; 8 November 1848 – 26 July 1925) was a German philosopher, logician, and mathematician. He was a mathematics professor at the University of Jena, and is understood by many to be the father of analytic philos ...
and Bertrand Russell
Bertrand Arthur William Russell, 3rd Earl Russell, (18 May 1872 – 2 February 1970) was a British philosopher, logician, mathematician, and public intellectual. He had influence on mathematics, logic, set theory, and various areas of analytic ...
, Hilbert sought to define mathematics logically using the method of formal system
A formal system is an abstract structure and formalization of an axiomatic system used for deducing, using rules of inference, theorems from axioms.
In 1921, David Hilbert proposed to use formal systems as the foundation of knowledge in ma ...
s, i.e., finitistic proofs from an agreed-upon set of axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or ...
s. One of the main goals of Hilbert's program
In mathematics, Hilbert's program, formulated by German mathematician David Hilbert in the early 1920s, was a proposed solution to the foundational crisis of mathematics, when early attempts to clarify the foundations of mathematics were found to ...
was a finitistic proof of the consistency of the axioms of arithmetic: that is his second problem.
However, Gödel's second incompleteness theorem gives a precise sense in which such a finitistic proof of the consistency of arithmetic is provably impossible. Hilbert lived for 12 years after Kurt Gödel
Kurt Friedrich Gödel ( ; ; April 28, 1906 – January 14, 1978) was a logician, mathematician, and philosopher. Considered along with Aristotle and Gottlob Frege to be one of the most significant logicians in history, Gödel profoundly ...
published his theorem, but does not seem to have written any formal response to Gödel's work.
Hilbert's tenth problem does not ask whether there exists an algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
for deciding the solvability of Diophantine equations ''Diophantine'' means pertaining to the ancient Greek mathematician Diophantus. A number of concepts bear this name:
*Diophantine approximation
In number theory, the study of Diophantine approximation deals with the approximation of real n ...
, but rather asks for the ''construction'' of such an algorithm: "to devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers". That this problem was solved by showing that there cannot be any such algorithm contradicted Hilbert's philosophy of mathematics.
In discussing his opinion that every mathematical problem should have a solution, Hilbert allows for the possibility that the solution could be a proof that the original problem is impossible.[This issue that finds its beginnings in the "foundational crisis" of the early 20th century, in particular the controversy about under what circumstances could the ]Law of Excluded Middle
In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. It is one of the three laws of thought, along with the law of noncontradiction and t ...
be employed in proofs. See much more at Brouwer–Hilbert controversy
The Brouwer–Hilbert controversy () was a debate in twentieth-century mathematics over fundamental questions about the consistency of axioms and the role of semantics and syntax in mathematics. L. E. J. Brouwer, a proponent of the constructivi ...
. He stated that the point is to know one way or the other what the solution is, and he believed that we always can know this, that in mathematics there is not any "ignorabimus
The Latin maxim , meaning "we do not know and will not know", represents the idea that scientific knowledge is limited. It was popularized by Emil du Bois-Reymond, a German physiologist, in his 1872 address ("The Limits of Science").
Seven ...
" (statement whose truth can never be known).["This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no ''ignorabimus''." (Hilbert, 1902, p. 445)] It seems unclear whether he would have regarded the solution of the tenth problem as an instance of ignorabimus.
On the other hand, the status of the first and second problems is even more complicated: there is no clear mathematical consensus as to whether the results of Gödel (in the case of the second problem), or Gödel and Cohen (in the case of the first problem) give definitive negative solutions or not, since these solutions apply to a certain formalization of the problems, which is not necessarily the only possible one.
Follow-ups
Since 1900, mathematicians and mathematical organizations have announced problem lists but, with few exceptions, these have not had nearly as much influence nor generated as much work as Hilbert's problems.
One exception consists of three conjectures made by André Weil
André Weil (; ; 6 May 1906 – 6 August 1998) was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is du ...
in the late 1940s (the Weil conjectures
In mathematics, the Weil conjectures were highly influential proposals by . They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
Th ...
). In the fields of algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, number theory and the links between the two, the Weil conjectures were very important. The first of these was proved by Bernard Dwork
Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of ''p''-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality ...
; a completely different proof of the first two, via â„“-adic cohomology, was given by Alexander Grothendieck
Alexander Grothendieck, later Alexandre Grothendieck in French (; ; ; 28 March 1928 – 13 November 2014), was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research ext ...
. The last and deepest of the Weil conjectures (an analogue of the Riemann hypothesis) was proved by Pierre Deligne
Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoor ...
. Both Grothendieck and Deligne were awarded the Fields medal
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of Mathematicians, International Congress of the International Mathematical Union (IMU), a meeting that takes place e ...
. However, the Weil conjectures were, in their scope, more like a single Hilbert problem, and Weil never intended them as a programme for all mathematics. This is somewhat ironic, since arguably Weil was the mathematician of the 1940s and 1950s who best played the Hilbert role, being conversant with nearly all areas of (theoretical) mathematics and having figured importantly in the development of many of them.
Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, g ...
posed hundreds, if not thousands, of mathematical problems
A problem is a difficulty which may be resolved by problem solving.
Problem(s) or The Problem may also refer to:
People
* Problem (rapper), (born 1985) American rapper Books
* ''Problems'' (Aristotle), an Aristotelian (or pseudo-Aristotelian) co ...
, many of them profound. Erdős often offered monetary rewards; the size of the reward depended on the perceived difficulty of the problem.
The end of the millennium, which was also the centennial of Hilbert's announcement of his problems, provided a natural occasion to propose "a new set of Hilbert problems". Several mathematicians accepted the challenge, notably Fields Medalist Steve Smale, who responded to a request by Vladimir Arnold
Vladimir Igorevich Arnold (or Arnol'd; , ; 12 June 1937 – 3 June 2010) was a Soviet and Russian mathematician. He is best known for the Kolmogorov–Arnold–Moser theorem regarding the stability of integrable systems, and contributed to s ...
to propose a list of 18 problems (Smale's problems
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 and republished in 1999. Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathemat ...
).
At least in the mainstream media, the ''de facto'' 21st century analogue of Hilbert's problems is the list of seven Millennium Prize Problems
The Millennium Prize Problems are seven well-known complex mathematics, mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem ...
chosen during 2000 by the Clay Mathematics Institute. Unlike the Hilbert problems, where the primary award was the admiration of Hilbert in particular and mathematicians in general, each prize problem includes a million-dollar bounty. As with the Hilbert problems, one of the prize problems (the Poincaré conjecture
In the mathematical field of geometric topology, the Poincaré conjecture (, , ) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
Originally conjectured b ...
) was solved relatively soon after the problems were announced.
The Riemann hypothesis is noteworthy for its appearance on the list of Hilbert problems, Smale's list, the list of Millennium Prize Problems, and even the Weil conjectures, in its geometric guise. Although it has been attacked by major mathematicians of our day, many experts believe that it will still be part of unsolved problems lists for many centuries. Hilbert himself declared: "If I were to awaken after having slept for a thousand years, my first question would be: Has the Riemann hypothesis been proved?"
In 2008, DARPA
The Defense Advanced Research Projects Agency (DARPA) is a research and development agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military. Originally known as the Adva ...
announced its own list of 23 problems that it hoped could lead to major mathematical breakthroughs, "thereby strengthening the scientific and technological capabilities of the DoD". The DARPA list also includes a few problems from Hilbert's list, e.g. the Riemann hypothesis.
Table of problems
Hilbert's 23 problems, and the unpublished 24th problem, are listed below. For details on the solutions and references, see the articles that are linked to in the first column.
See also
* Landau's problems
At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic problems about prime numbers. These problems were characterised in his speech as "unattackable at the present state of mathematics" and are now known as Landau' ...
* Millennium Prize Problems
The Millennium Prize Problems are seven well-known complex mathematics, mathematical problems selected by the Clay Mathematics Institute in 2000. The Clay Institute has pledged a US $1 million prize for the first correct solution to each problem ...
* Smale's problems
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 and republished in 1999. Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathemat ...
* Taniyama's problems
Taniyama's problems are a set of 36 mathematical problems posed by Japanese mathematician Yutaka Taniyama in 1955. The problems primarily focused on algebraic geometry, number theory, and the connections between modular forms and elliptic curves. ...
* Thurston's 24 questions
Thurston's 24 questions are a set of mathematical problems in differential geometry posed by American mathematician William Thurston in his influential 1982 paper ''Three-dimensional manifolds, Kleinian groups and hyperbolic geometry'' published ...
Notes
References
Further reading
*
*
*
*
''A wealth of information relevant to Hilbert's "program" and Gödel's impact on the Second Question, the impact of Arend Heyting
__NOTOC__
Arend Heyting (; 9 May 1898 – 9 July 1980) was a Dutch mathematician and logician.
Biography
Heyting was a student of Luitzen Egbertus Jan Brouwer at the University of Amsterdam, and did much to put intuitionistic logic on a foo ...
's and Brouwer's Intuitionism
In the philosophy of mathematics, intuitionism, or neointuitionism (opposed to preintuitionism), is an approach where mathematics is considered to be purely the result of the constructive mental activity of humans rather than the discovery of fu ...
on Hilbert's philosophy.''
*
''A collection of survey essays by experts devoted to each of the 23 problems emphasizing current developments.''
*
''An account at the undergraduate level by the mathematician who completed the solution of the problem.''
External links
*
*
*
*
{{DEFAULTSORT:Hilbert's Problems
Unsolved problems in mathematics