Hilbert's eleventh problem is one of
David Hilbert
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many a ...
's
list of open mathematical problems posed at the Second International Congress of Mathematicians in Paris in 1900. A furthering of the theory of
quadratic forms
In mathematics, a quadratic form is a polynomial with terms all of degree two ("form" is another name for a homogeneous polynomial). For example,
:4x^2 + 2xy - 3y^2
is a quadratic form in the variables and . The coefficients usually belong to a ...
, he stated the problem as follows:
:''Our present knowledge of the theory of
quadratic number field
In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers.
Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 ...
s puts us in a position to attack successfully the theory of quadratic forms with any number of variables and with any algebraic numerical coefficients. This leads in particular to the interesting problem: to solve a given quadratic equation with algebraic numerical coefficients in any number of variables by integral or fractional numbers belonging to the algebraic realm of rationality determined by the coefficients.''
As stated by Kaplansky, "The 11th Problem is simply this: classify quadratic forms over
algebraic number field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension).
Thus K is a f ...
s." This is exactly what Minkowski did for quadratic form with fractional coefficients. A quadratic form (not quadratic equation) is any
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exa ...
in which each term has variables appearing exactly twice. The general form of such an equation is ''ax''
2 + ''bxy'' + ''cy''
2. (All coefficients must be whole numbers.)
A given quadratic form is said to ''represent'' a
natural number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country").
Numbers used for counting are called ''Cardinal n ...
if substituting specific numbers for the variables gives the number. Gauss and those who followed found that if we change variables in certain ways, the new quadratic form represented the same natural numbers as the old, but in a different, more easily interpreted form. He used this theory of equivalent quadratic forms to prove number theory results. Lagrange, for example, had shown that any natural number can be expressed as the sum of four squares. Gauss proved this using his theory of
equivalence relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.
Each equivalence relation ...
s
by showing that the quadratic
represents all natural numbers. As mentioned earlier, Minkowski created and proved a similar theory for quadratic forms that had fractions as coefficients. Hilbert's eleventh problem asks for a similar theory. That is, a mode of classification so we can tell if one form is equivalent to another, but in the case where coefficients can be
algebraic number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the po ...
s.
Helmut Hasse
Helmut Hasse (; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of ''p''-adic numbers to local class field theory and ...
's accomplished this in a proof using his
local-global principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of each ...
and the fact that the theory is relatively simple for
''p''-adic systems in October 1920. He published his work in 1923 and 1924. See
Hasse principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an integer solution to an equation by using the Chinese remainder theorem to piece together solutions modulo powers of eac ...
,
Hasse–Minkowski theorem
The Hasse–Minkowski theorem is a fundamental result in number theory which states that two quadratic forms over a number field are equivalent if and only if they are equivalent ''locally at all places'', i.e. equivalent over every completion o ...
. The local-global principle says that a general result about a rational number or even all rational numbers can often be established by verifying that the result holds true for each of the ''p''-adic number systems.
There is also more recent work on Hilbert's eleventh problem studying when an integer can be represented by a quadratic form. An example is the work of Cogdell,
Piatetski-Shapiro
Ilya Piatetski-Shapiro (Hebrew: איליה פיאטצקי-שפירו; russian: Илья́ Ио́сифович Пяте́цкий-Шапи́ро; 30 March 1929 – 21 February 2009) was a Soviet-born Israeli mathematician. During a career that sp ...
and
Sarnak.
See also
*
Hilbert's problems
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the pro ...
Notes
References
* Yandell, Benjamin H. ''The Honors Class: Hilbert's Problems and Their Solvers.'' Natik: K Peters. Print.
{{Hilbert's problems
#11
Quadratic forms