Heteroreceptor
   HOME

TheInfoList



OR:

A heteroreceptor is a
receptor Receptor may refer to: * Sensory receptor, in physiology, any neurite structure that, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and respond ...
located in the cell membrane of a neuron, regulating the synthesis and/or the release of mediators other than its own
ligand In coordination chemistry, a ligand is an ion or molecule with a functional group that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's el ...
. Heteroreceptors play a crucial role in modulating
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a Chemical synapse, synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotra ...
systems and are often targets for therapeutic drugs. By influencing the activity of other neurotransmitters, the receptors contribute to the complex regulation of neural communication and have been implicated in various
physiological Physiology (; ) is the science, scientific study of function (biology), functions and mechanism (biology), mechanisms in a life, living system. As a branches of science, subdiscipline of biology, physiology focuses on how organisms, organ syst ...
and
pathological Pathology is the study of disease. The word ''pathology'' also refers to the study of disease in general, incorporating a wide range of biology research fields and medical practices. However, when used in the context of modern medical treatme ...
processes. Heteroreceptors may be located in any part of the
Neuron A neuron (American English), neurone (British English), or nerve cell, is an membrane potential#Cell excitability, excitable cell (biology), cell that fires electric signals called action potentials across a neural network (biology), neural net ...
including the
dendrites A dendrite (from Greek δένδρον ''déndron'', "tree") or dendron is a branched cytoplasmic process that extends from a nerve cell that propagates the electrochemical stimulation received from other neural cells to the cell body, or soma ...
, the
cell body In cellular neuroscience, the soma (: somata or somas; ), neurocyton, or cell body is the bulbous, non-process portion of a neuron or other brain cell type, containing the cell nucleus. Although it is often used to refer to neurons, it can also ...
, the
axon An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
, or the
axon terminals An axon (from Greek ἄξων ''áxōn'', axis) or nerve fiber (or nerve fibre: see American and British English spelling differences#-re, -er, spelling differences) is a long, slender cellular extensions, projection of a nerve cell, or neuron, ...
. Heteroreceptors respond to
neurotransmitters A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, or target cell, may be another neuron, but could also be a gland or muscle cell. Neurotransmitters are rele ...
,
neuromodulators Neuromodulation is the physiology, physiological process by which a given neuron uses one or more chemicals to regulate diverse populations of neurons. Neuromodulators typically bind to metabotropic receptor, metabotropic, G protein-coupled rece ...
, or
neurohormones A neurohormone is any hormone produced and released by neuroendocrine cells (also called neurosecretory cells) into the blood. By definition of being hormones, they are secreted into the circulation for systemic effect, but they can also have a rol ...
released from adjacent neurons or cells; they are opposite to
autoreceptors An autoreceptor is a type of receptor located in the membranes of nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or hormones released by the neuron on which the aut ...
, which are sensitive only to neurotransmitters or hormones released by the cell in whose wall they are embedded.


Examples

*
Norepinephrine Norepinephrine (NE), also called noradrenaline (NA) or noradrenalin, is an organic compound, organic chemical in the catecholamine family that functions in the brain and human body, body as a hormone, neurotransmitter and neuromodulator. The ...
can influence the release of
acetylcholine Acetylcholine (ACh) is an organic compound that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Par ...
from parasympathetic neurons by acting on α2 adrenergic (α2A, α2B, and α2C) heteroreceptors. These effects are related to
analgesia Pain management is an aspect of medicine and health care involving relief of pain (pain relief, analgesia, pain control) in various dimensions, from acute and simple to chronic and challenging. Most physicians and other health professionals ...
,
sedation Sedation is the reduction of irritability or agitation by administration of sedative drugs, generally to facilitate a medical procedure or diagnostic procedure. Examples of drugs which can be used for sedation include isoflurane, diethyl ether, ...
,
hypothermia Hypothermia is defined as a body core temperature below in humans. Symptoms depend on the temperature. In mild hypothermia, there is shivering and mental confusion. In moderate hypothermia, shivering stops and confusion increases. In severe ...
. * Acetylcholine can influence the release of norepinephrine from sympathetic neurons by acting on muscarinic-2 and muscarinic-4 heteroreceptors. * CB1 negatively modulates the release of
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
and
glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
, playing a crucial role in maintaining a homeostasis between excitatory and inhibitory transmission. *
Glutamate Glutamic acid (symbol Glu or E; known as glutamate in its anionic form) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a Essential amino acid, non-essential nutrient for humans, meaning that ...
released from an excitatory neuron escapes from the
synaptic cleft Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in neuromuscular junction, muscles or glands. Chemical synapses allow neurons to form biological neural ...
and preferentially affects mGluR III receptors on the presynaptic terminals of interneurons. Glutamate spillover leads to inhibition of
GABA GABA (gamma-aminobutyric acid, γ-aminobutyric acid) is the chief inhibitory neurotransmitter in the developmentally mature mammalian central nervous system. Its principal role is reducing neuronal excitability throughout the nervous system. GA ...
release, modulating GABAergic transmission.


See also

*
Autoreceptor An autoreceptor is a type of Receptor (biochemistry), receptor located in the cell membrane, membranes of neuron, nerve cells. It serves as part of a negative feedback loop in signal transduction. It is only sensitive to the neurotransmitters or ...


References

Receptors Cell signaling {{Molecular-cell-biology-stub