In
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, a Hermitian function is a
complex function with the property that its
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
is equal to the original function with the variable changed in
sign
A sign is an Physical object, object, quality (philosophy), quality, event, or Non-physical entity, entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to ...
:
:
(where the
indicates the complex conjugate) for all
in the domain of
. In physics, this property is referred to as
PT symmetry.
This definition extends also to functions of two or more variables, e.g., in the case that
is a function of two variables it is Hermitian if
:
for all pairs
in the domain of
.
From this definition it follows immediately that:
is a Hermitian function
if and only if
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false.
The connective is bi ...
* the real part of
is an
even function,
* the imaginary part of
is an
odd function.
Motivation
Hermitian functions appear frequently in mathematics, physics, and signal processing. For example, the following two statements follow from basic properties of the Fourier transform:
* The function
is real-valued if and only if the
Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
of
is Hermitian.
* The function
is Hermitian if and only if the
Fourier transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
of
is real-valued.
Since the Fourier transform of a real signal is guaranteed to be Hermitian, it can be compressed using the Hermitian even/odd symmetry. This, for example, allows the
discrete Fourier transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
of a signal (which is in general complex) to be stored in the same space as the original real signal.
* If ''f'' is Hermitian, then
.
Where the
is
cross-correlation
In signal processing, cross-correlation is a measure of similarity of two series as a function of the displacement of one relative to the other. This is also known as a ''sliding dot product'' or ''sliding inner-product''. It is commonly used f ...
, and
is
convolution
In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution' ...
.
* If both ''f'' and ''g'' are Hermitian, then
.
See also
*
*
Types of functions
Calculus
{{mathanalysis-stub