Relation to stability
Stability is defined when the aircraft is "in trim"; that is, there are no unbalanced forces or moments acting on the vehicle to cause it to deviate from steady flight. If the vehicle is then disturbed, stability refers to the tendency of the vehicle to return to the trimmed condition. If the vehicle initially tends to return to a trimmed condition, it is said to be statically stable. If it continues to approach the trimmed condition without overshooting, the motion is called a subsidence. If the motion causes the vehicle to overshoot the trimmed condition, it may oscillate back and forth. If this oscillation damps out, the motion is called a damped oscillation and the vehicle is said to be dynamically stable. On the other hand, if the motion increases in amplitude, the vehicle is said to be dynamically unstable. The theory of stability of airplanes was worked out by G. H. Bryan in 1904. This theory is essentially equivalent to the theory taught to aeronautical students today and was a remarkable intellectual achievement considering that at the time Bryan developed the theory, he had not even heard of the Wright brothers' first flight. Because of the complication of the theory and the tedious computations required in its use, it was rarely applied by airplane designers. Pilotless airplanes had to be dynamically stable to fly successfully. The airplane flown by the Wright brothers, and most airplanes flown thereafter, were not stable, but by trial and error, designers developed a few planes that had satisfactory flying qualities. Many other airplanes, however, had poor flying qualities, which sometimes resulted in crashes. Handling qualities are those characteristics of a flight vehicle that govern the ease and precision with which a pilot is able to perform a flying task. This includes the human-machine interface. The way in which particular vehicle factors affect flying qualities has been studied in aircraft for decades, and reference standards for the flying qualities of both fixed-wing aircraft and rotary-wing aircraft have been developed and are now in common use. These standards define a subset of the dynamics and control design space that provides good handling qualities for a given vehicle type and flying task.Historical development
Bryan showed that the stability characteristics of airplanes could be separated into longitudinal and lateral groups with the corresponding motions called modes of motion. These modes of motion were either aperiodic, which means that the airplane steadily approaches or diverges from a trimmed condition, or oscillatory, which means that the airplane oscillates about the trim condition. The longitudinal modes of a statically stable airplane following a disturbance were shown to consist of a long-period oscillation called theEvaluation of flying qualities
The technique for the study of flying qualities requirements used by Gilruth was first to install instruments to record relevant quantities such as control positions and forces, airplane angular velocities, linear accelerations, airspeed, and altitude. Then a program of specified flight conditions and maneuvers was flown by an experienced test pilot. After the flight, data were transcribed from the records and the results were correlated with pilot opinion. This approach would be considered routine today, but it was a notable original contribution by Gilruth that took advantage of the flight recording instruments already available at Langley and the variety of airplanes available for tests under comparable conditions. An important quantity in flying qualities measurements in turns or pull-ups is the variation of control force on the control stick or wheel with the value of acceleration normal to the flight direction expressed in g units. This quantity is usually called the force per g.Relation to Spacecraft
A new generation of spacecraft now under development by NASA to replace the Space Shuttle and return astronauts to the Moon will have a manual control capability for several mission tasks, and the ease and precision with which pilots can execute these tasks will have an important effect on performance, mission risk and training costs. No reference standards currently exist for flying qualities of piloted spacecraft.See also
* Flight test * Cooper-Harper rating scale *References
External links
*