In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, in the areas of
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
and
combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many ...
, Hall words provide a unique
monoid factorisation In mathematics, a factorisation of a free monoid is a sequence of subsets of words with the property that every word in the free monoid can be written as a concatenation of elements drawn from the subsets. The Chen–Fox–Lyndon theorem states tha ...
of the
free monoid
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero ...
. They are also
totally ordered
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X:
# a \leq a ( r ...
, and thus provide a total order on the monoid. This is analogous to the better-known case of
Lyndon word
In mathematics, in the areas of combinatorics and computer science, a Lyndon word is a nonempty string that is strictly smaller in lexicographic order than all of its rotations. Lyndon words are named after mathematician Roger Lyndon, who investi ...
s; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are
binary tree
In computer science, a binary tree is a tree data structure in which each node has at most two children, referred to as the ''left child'' and the ''right child''. That is, it is a ''k''-ary tree with . A recursive definition using set theor ...
s; taken together, they form the Hall set. This set is a particular
totally ordered
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X:
# a \leq a ( r ...
subset of a free non-associative algebra, that is, a
free magma. In this form, the Hall trees provide a basis for
free Lie algebra In mathematics, a free Lie algebra over a field ''K'' is a Lie algebra generated by a set ''X'', without any imposed relations other than the defining relations of alternating ''K''-bilinearity and the Jacobi identity.
Definition
The definition ...
s, and can be used to perform the commutations required by the
Poincaré–Birkhoff–Witt theorem
In mathematics, more specifically in the theory of Lie algebras, the Poincaré–Birkhoff–Witt theorem (or PBW theorem) is a result giving an explicit description of the universal enveloping algebra of a Lie algebra. It is named after Henri Poi ...
used in the construction of a
universal enveloping algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra.
Universal enveloping algebras are used in the representa ...
. As such, this generalizes the same process when done with the Lyndon words. Hall trees can also be used to give a total order to the elements of a group, via the
commutator collecting process
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
, which is a special case of the general construction given below. It can be shown that Lazard sets coincide with Hall sets.
The historical development runs in reverse order from the above description. The
commutator collecting process
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
was described first, in 1934, by
Philip Hall
Philip Hall FRS (11 April 1904 – 30 December 1982), was an English mathematician. His major work was on group theory, notably on finite groups and solvable groups.
Biography
He was educated first at Christ's Hospital, where he won the Thom ...
and explored in 1937 by
Wilhelm Magnus
Hans Heinrich Wilhelm Magnus, known as Wilhelm Magnus (5 February 1907 in Berlin, Germany – 15 October 1990 in New Rochelle, New York), was a German-American mathematician. He made important contributions in combinatorial group theory, Lie algeb ...
. Hall sets were introduced by
Marshall Hall based on work of Philip Hall on groups.
[
]
Subsequently,
Wilhelm Magnus
Hans Heinrich Wilhelm Magnus, known as Wilhelm Magnus (5 February 1907 in Berlin, Germany – 15 October 1990 in New Rochelle, New York), was a German-American mathematician. He made important contributions in combinatorial group theory, Lie algeb ...
showed that they arise as the
graded Lie algebra In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operati ...
associated with the
filtration
Filtration is a physical separation process that separates solid matter and fluid from a mixture using a ''filter medium'' that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filte ...
on a
free group
In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''− ...
given by the
lower central series
In mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a centr ...
. This correspondence was motivated by
commutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
Group theory
The commutator of two elements, ...
identities in
group theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups.
The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field ( ...
due to Philip Hall and
Ernst Witt
Ernst Witt (26 June 1911 – 3 July 1991) was a German mathematician, one of the leading algebraists of his time.
Biography
Witt was born on the island of Alsen, then a part of the German Empire. Shortly after his birth, his parents moved the f ...
.
Notational preliminaries
The setting for this article is the
free magma in
generators. This is simply a set containing
elements, along with a
binary operator
In mathematics, a binary operation or dyadic operation is a rule for combining two elements (called operands) to produce another element. More formally, a binary operation is an operation of arity two.
More specifically, a binary operation o ...
that allows any two elements to be juxtaposed, next to each other. The juxtaposition is taken to be
non-associative
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a Validity (logic), valid rule of replaceme ...
and
non-commutative
In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Perhaps most familiar as a pr ...
, so that parenthesis must necessarily be used, when juxtaposing three or more elements. Thus, for example,
is not the same as
.
In this way, the magma operator
provides a convenient stand-in for any other desired binary operator that might have additional properties, such as group or algebra commutators. Thus, for example, the magma juxtaposition can be mapped to the commutator of a non-commutative algebra:
:
or to a group commutator:
:
The above two maps are just magma homomorphisms, in the conventional sense of a
homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homo ...
; the objects on the right just happen to have more structure than a magma does. To avoid the awkward typographical mess that is
, it is conventional to just write
for
. The use of parenthesis is mandatory, however, since
as already noted. If
is a compound object, one might sometimes write
as needed, to disambiguate usage. Of course, one can also write