Apache Hadoop () is a collection of
open-source
Open source is source code that is made freely available for possible modification and redistribution. Products include permission to use and view the source code, design documents, or content of the product. The open source model is a decentrali ...
software utilities for reliable, scalable,
distributed computing
Distributed computing is a field of computer science that studies distributed systems, defined as computer systems whose inter-communicating components are located on different networked computers.
The components of a distributed system commu ...
. It provides a
software framework
In computer programming, a software framework is a software abstraction that provides generic functionality which developers can extend with custom code to create applications. It establishes a standard foundation for building and deploying soft ...
for
distributed storage and processing of
big data
Big data primarily refers to data sets that are too large or complex to be dealt with by traditional data processing, data-processing application software, software. Data with many entries (rows) offer greater statistical power, while data with ...
using the
MapReduce
MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel and distributed algorithm on a cluster.
A MapReduce program is composed of a ''map'' procedure, which performs filte ...
programming model
A programming model is an execution model coupled to an API or a particular pattern of code. In this style, there are actually two execution models in play: the execution model of the base programming language and the execution model of the p ...
. Hadoop was originally designed for
computer cluster
A computer cluster is a set of computers that work together so that they can be viewed as a single system. Unlike grid computers, computer clusters have each node set to perform the same task, controlled and scheduled by software. The newes ...
s built from
commodity hardware, which is still the common use. It has since also found use on clusters of higher-end hardware. All the modules in Hadoop are designed with a fundamental assumption that hardware failures are common occurrences and should be automatically handled by the framework.
Overview
The core of Apache Hadoop consists of a storage part, known as Hadoop Distributed File System (HDFS), and a processing part which is a MapReduce programming model. Hadoop splits files into large blocks and distributes them across nodes in a cluster. It then transfers
packaged code into nodes to process the data in parallel. This approach takes advantage of
data locality, where nodes manipulate the data they have access to. This allows the dataset to be
processed faster and more efficiently than it would be in a more conventional
supercomputer architecture that relies on a
parallel file system where computation and data are distributed via high-speed networking.
The base Apache Hadoop framework is composed of the following modules:
* ''Hadoop Common'' – contains libraries and utilities needed by other Hadoop modules;
* ''Hadoop Distributed File System (HDFS)'' – a distributed file-system that stores data on commodity machines, providing very high aggregate bandwidth across the cluster;
* ''Hadoop YARN'' – (introduced in 2012) is a platform responsible for managing computing resources in clusters and using them for scheduling users' applications;
* ''Hadoop MapReduce'' – an implementation of the MapReduce programming model for large-scale data processing.
* ''Hadoop Ozone'' – (introduced in 2020) An object store for Hadoop
The term ''Hadoop'' is often used for both base modules and sub-modules and also the ''ecosystem'', or collection of additional software packages that can be installed on top of or alongside Hadoop, such as
Apache Pig
Apache Pig
is a high-level platform for creating programs that run on Hadoop, Apache Hadoop. The language for this platform is called Pig Latin. Pig can execute its Hadoop jobs in MapReduce, Apache Tez, or Apache Spark. Pig Latin abstracts the ...
,
Apache Hive
Apache Hive is a data warehouse software project. It is built on top of Apache Hadoop for providing data query and analysis. Hive gives an SQL-like Interface (computing), interface to query data stored in various databases and file systems that i ...
,
Apache HBase
HBase is an open-source non-relational distributed database modeled after Google's Bigtable and written in Java. It is developed as part of Apache Software Foundation's Apache Hadoop project and runs on top of HDFS (Hadoop Distributed Fil ...
,
Apache Phoenix
Apache Phoenix is an open source, massively parallel, relational database engine supporting OLTP for Hadoop using Apache HBase as its backing store. Phoenix provides a JDBC driver that hides the intricacies of the NoSQL store enabling users to cr ...
,
Apache Spark
Apache Spark is an open-source unified analytics engine for large-scale data processing. Spark provides an interface for programming clusters with implicit data parallelism and fault tolerance. Originally developed at the University of Californ ...
,
Apache ZooKeeper,
Apache Impala
Apache Impala is an open source massively parallel processing (MPP) SQL query engine for data stored in a computer cluster running Apache Hadoop. Impala has been described as the open-source equivalent of Google F1, which inspired its developmen ...
,
Apache Flume
This list of Apache Software Foundation projects contains the software development projects of The Apache Software Foundation (ASF).
Besides the projects, there are a few other distinct areas of Apache:
*Incubator: for aspiring ASF projects
*Att ...
,
Apache Sqoop,
Apache Oozie, and
Apache Storm.
Apache Hadoop's MapReduce and HDFS components were inspired by
Google
Google LLC (, ) is an American multinational corporation and technology company focusing on online advertising, search engine technology, cloud computing, computer software, quantum computing, e-commerce, consumer electronics, and artificial ...
papers on
MapReduce
MapReduce is a programming model and an associated implementation for processing and generating big data sets with a parallel and distributed algorithm on a cluster.
A MapReduce program is composed of a ''map'' procedure, which performs filte ...
and
Google File System.
The Hadoop framework itself is mostly written in the
Java programming language
Java is a high-level, general-purpose, memory-safe, object-oriented programming language. It is intended to let programmers ''write once, run anywhere'' ( WORA), meaning that compiled Java code can run on all platforms that support Jav ...
, with some native code in
C and
command line
A command-line interface (CLI) is a means of interacting with software via command (computing), commands each formatted as a line of text. Command-line interfaces emerged in the mid-1960s, on computer terminals, as an interactive and more user ...
utilities written as
shell scripts.
Perl
Perl is a high-level, general-purpose, interpreted, dynamic programming language. Though Perl is not officially an acronym, there are various backronyms in use, including "Practical Extraction and Reporting Language".
Perl was developed ...
language can be easily used with Hadoop Streaming to implement the map and reduce parts of the user's program.
History
According to its co-founders,
Doug Cutting
Douglass Read Cutting is a software designer, advocate for, and creator of open-source search technology. He founded two technology projects, Lucene and Nutch, with Mike Cafarella. The Apache Software Foundation now manages both projects. Cutti ...
and
Mike Cafarella, the genesis of Hadoop was the Google File System paper that was published in October 2003. This paper spawned another one from Google "MapReduce: Simplified Data Processing on Large Clusters". Development started on the
Apache Nutch project, but was moved to the new Hadoop subproject in January 2006. Doug Cutting, who was working at
Yahoo!
Yahoo (, styled yahoo''!'' in its logo) is an American web portal that provides the search engine Yahoo Search and related services including My Yahoo, Yahoo Mail, Yahoo News, Yahoo Finance, Yahoo Sports, y!entertainment, yahoo!life, and its a ...
at the time, named it after his son's toy elephant. The initial code that was factored out of Nutch consisted of about 5,000 lines of code for HDFS and about 6,000 lines of code for MapReduce.
In March 2006, Owen O'Malley was the first committer to add to the Hadoop project; Hadoop 0.1.0 was released in April 2006. It continues to evolve through contributions that are being made to the project. The first design document for the Hadoop Distributed File System was written by Dhruba Borthakur in 2007.
Architecture
Hadoop consists of the ''Hadoop Common'' package, which provides file system and operating system level abstractions, a MapReduce engine (either MapReduce/MR1 or YARN/MR2) and the
Hadoop Distributed File System (HDFS). The Hadoop Common package contains the
Java Archive (JAR) files and scripts needed to start Hadoop.
For effective scheduling of work, every Hadoop-compatible file system should provide location awareness, which is the name of the rack, specifically the network switch where a worker node is. Hadoop applications can use this information to execute code on the node where the data is, and, failing that, on the same rack/switch to reduce backbone traffic. HDFS uses this method when replicating data for data redundancy across multiple racks. This approach reduces the impact of a rack power outage or switch failure; if any of these hardware failures occurs, the data will remain available.

A small Hadoop cluster includes a single master and multiple worker nodes. The master node consists of a Job Tracker, Task Tracker, NameNode, and DataNode. A slave or ''worker node'' acts as both a DataNode and TaskTracker, though it is possible to have data-only and compute-only worker nodes. These are normally used only in nonstandard applications.
Hadoop requires the
Java Runtime Environment
Java is a set of computer software and specifications that provides a software platform for developing application software and deploying it in a cross-platform computing environment. Java is used in a wide variety of computing platforms ...
(JRE) 1.6 or higher. The standard startup and shutdown scripts require that
Secure Shell
The Secure Shell Protocol (SSH Protocol) is a cryptographic network protocol for operating network services securely over an unsecured network. Its most notable applications are remote login and command-line execution.
SSH was designed for ...
(SSH) be set up between nodes in the cluster.
In a larger cluster, HDFS nodes are managed through a dedicated NameNode server to host the file system index, and a secondary NameNode that can generate snapshots of the namenode's memory structures, thereby preventing file-system corruption and loss of data. Similarly, a standalone JobTracker server can manage job scheduling across nodes. When Hadoop MapReduce is used with an alternate file system, the NameNode, secondary NameNode, and DataNode architecture of HDFS are replaced by the file-system-specific equivalents.
File systems
Hadoop distributed file system
The ''Hadoop distributed file system'' (HDFS) is a distributed, scalable, and portable
file system written in Java for the Hadoop framework. A Hadoop instance is divided into HDFS and MapReduce. HDFS is used for storing the data and MapReduce is used for processing data.
HDFS has five services as follows:
# Name Node
# Secondary Name Node
# Job tracker
# Data Node
# Task Tracker
Top three are Master Services/Daemons/Nodes and bottom two are Slave Services. Master Services can communicate with each other and in the same way Slave services can communicate with each other. Name Node is a master node and Data node is its corresponding Slave node and can talk with each other.
Name Node: HDFS consists of only one Name Node that is called the Master Node. The master node can track files, manage the file system and has the
metadata
Metadata (or metainformation) is "data that provides information about other data", but not the content of the data itself, such as the text of a message or the image itself. There are many distinct types of metadata, including:
* Descriptive ...
of all of the stored data within it. In particular, the name node contains the details of the number of blocks, locations of the data node that the data is stored in, where the replications are stored, and other details. The name node has direct contact with the client.
Data Node: A Data Node stores data in it as blocks. This is also known as the slave node and it stores the actual data into HDFS which is responsible for the client to read and write. These are slave daemons. Every Data node sends a Heartbeat message to the Name node every 3 seconds and conveys that it is alive. In this way when Name Node does not receive a heartbeat from a data node for 2 minutes, it will take that data node as dead and starts the process of block replications on some other Data node.
Secondary Name Node: This is only to take care of the checkpoints of the file system metadata which is in the Name Node. This is also known as the checkpoint Node. It is the helper Node for the Name Node. The secondary name node instructs the name node to create & send fsimage & editlog file, upon which the compacted fsimage file is created by the secondary name node.
Job Tracker: Job Tracker receives the requests for Map Reduce execution from the client. Job tracker talks to the Name Node to know about the location of the data that will be used in processing. The Name Node responds with the metadata of the required processing data.
Task Tracker: It is the Slave Node for the Job Tracker and it will take the task from the Job Tracker. It also receives code from the Job Tracker. Task Tracker will take the code and apply on the file. The process of applying that code on the file is known as Mapper.
Hadoop cluster has nominally a single namenode plus a cluster of datanodes, although
redundancy options are available for the namenode due to its criticality. Each datanode serves up blocks of data over the network using a block protocol specific to HDFS. The file system uses
TCP/IP
The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are ...
sockets for communication. Clients use
remote procedure call
In distributed computing, a remote procedure call (RPC) is when a computer program causes a procedure (subroutine) to execute in a different address space (commonly on another computer on a shared computer network), which is written as if it were a ...
s (RPC) to communicate with each other.
HDFS stores large files (typically in the range of gigabytes to terabytes) across multiple machines. It achieves reliability by
replicating the data across multiple hosts, and hence theoretically does not require
redundant array of independent disks (RAID) storage on hosts (but to increase input-output (I/O) performance some RAID configurations are still useful). With the default replication value, 3, data is stored on three nodes: two on the same rack, and one on a different rack. Data nodes can talk to each other to rebalance data, to move copies around, and to keep the replication of data high. HDFS is not fully POSIX-compliant, because the requirements for a POSIX file-system differ from the target goals of a Hadoop application. The trade-off of not having a fully POSIX-compliant file-system is increased performance for data
throughput
Network throughput (or just throughput, when in context) refers to the rate of message delivery over a communication channel in a communication network, such as Ethernet or packet radio. The data that these messages contain may be delivered ov ...
and support for non-POSIX operations such as Append.
In May 2012, high-availability capabilities were added to HDFS,
letting the main metadata server called the NameNode manually fail-over onto a backup. The project has also started developing automatic
fail-overs.
The HDFS file system includes a so-called ''secondary namenode'', a misleading term that some might incorrectly interpret as a backup namenode when the primary namenode goes offline. In fact, the secondary namenode regularly connects with the primary namenode and builds snapshots of the primary namenode's directory information, which the system then saves to local or remote directories. These checkpointed images can be used to restart a failed primary namenode without having to replay the entire journal of file-system actions, then to edit the log to create an up-to-date directory structure. Because the namenode is the single point for storage and management of metadata, it can become a bottleneck for supporting a huge number of files, especially a large number of small files. HDFS Federation, a new addition, aims to tackle this problem to a certain extent by allowing multiple namespaces served by separate namenodes. Moreover, there are some issues in HDFS such as small file issues, scalability problems, Single Point of Failure (SPoF), and bottlenecks in huge metadata requests.
One advantage of using HDFS is data awareness between the job tracker and task tracker. The job tracker schedules map or reduce jobs to task trackers with an awareness of the data location. For example: if node A contains data (a, b, c) and node X contains data (x, y, z), the job tracker schedules node A to perform map or reduce tasks on (a, b, c) and node X would be scheduled to perform map or reduce tasks on (x, y, z). This reduces the amount of traffic that goes over the network and prevents unnecessary data transfer. When Hadoop is used with other file systems, this advantage is not always available. This can have a significant impact on job-completion times as demonstrated with data-intensive jobs.
HDFS was designed for mostly immutable files and may not be suitable for systems requiring concurrent write operations.
HDFS can be
mounted
Mount is often used as part of the name of specific mountains, e.g. Mount Everest.
Mount or Mounts may also refer to:
Places
* Mount, Cornwall, a village in Warleggan parish, England
* Mount, Perranzabuloe, a hamlet in Perranzabuloe parish, Co ...
directly with a
Filesystem in Userspace
Filesystem in Userspace (FUSE) is a software interface for Unix and Unix-like computer operating systems that lets non-privileged users create their own file systems without editing kernel code. This is achieved by running file system code in ...
(FUSE)
virtual file system
A virtual file system (VFS) or virtual filesystem switch is an abstract layer on top of a more concrete file system. The purpose of a VFS is to allow client applications to access different types of concrete file systems in a uniform way. A VFS ...
on
Linux
Linux ( ) is a family of open source Unix-like operating systems based on the Linux kernel, an kernel (operating system), operating system kernel first released on September 17, 1991, by Linus Torvalds. Linux is typically package manager, pac ...
and some other
Unix
Unix (, ; trademarked as UNIX) is a family of multitasking, multi-user computer operating systems that derive from the original AT&T Unix, whose development started in 1969 at the Bell Labs research center by Ken Thompson, Dennis Ritchie, a ...
systems.
File access can be achieved through the native Java API, the
Thrift API (generates a client in a number of languages e.g. C++, Java, Python, PHP, Ruby, Erlang, Perl, Haskell, C#,
Cocoa, Smalltalk, and
OCaml
OCaml ( , formerly Objective Caml) is a General-purpose programming language, general-purpose, High-level programming language, high-level, Comparison of multi-paradigm programming languages, multi-paradigm programming language which extends the ...
), the
command-line interface
A command-line interface (CLI) is a means of interacting with software via command (computing), commands each formatted as a line of text. Command-line interfaces emerged in the mid-1960s, on computer terminals, as an interactive and more user ...
, the HDFS-UI
web application
A web application (or web app) is application software that is created with web technologies and runs via a web browser. Web applications emerged during the late 1990s and allowed for the server to dynamically build a response to the request, ...
over
HTTP
HTTP (Hypertext Transfer Protocol) is an application layer protocol in the Internet protocol suite model for distributed, collaborative, hypermedia information systems. HTTP is the foundation of data communication for the World Wide Web, wher ...
, or via 3rd-party network client libraries.
HDFS is designed for portability across various hardware platforms and for compatibility with a variety of underlying operating systems. The HDFS design introduces portability limitations that result in some performance bottlenecks, since the Java implementation cannot use features that are exclusive to the platform on which HDFS is running. Due to its widespread integration into enterprise-level infrastructure, monitoring HDFS performance at scale has become an increasingly important issue. Monitoring end-to-end performance requires tracking metrics from datanodes, namenodes, and the underlying operating system. There are currently several monitoring platforms to track HDFS performance, including
Hortonworks,
Cloudera
Cloudera, Inc. is an American data lake software company.
History
Cloudera, Inc. was formed on June 27, 2008 in Burlingame, California by Christophe Bisciglia, Amr Awadallah, Jeff Hammerbacher, and chief executive Mike Olson. Prior to Cloude ...
, and
Datadog.
Other file systems
Hadoop works directly with any distributed file system that can be mounted by the underlying operating system by simply using a
file://
URL; however, this comes at a price – the loss of locality. To reduce network traffic, Hadoop needs to know which servers are closest to the data, information that Hadoop-specific file system bridges can provide.
In May 2011, the list of supported file systems bundled with Apache Hadoop were:
* HDFS: Hadoop's own rack-aware file system. This is designed to scale to tens of petabytes of storage and runs on top of the file systems of the underlying
operating system
An operating system (OS) is system software that manages computer hardware and software resources, and provides common daemon (computing), services for computer programs.
Time-sharing operating systems scheduler (computing), schedule tasks for ...
s.
* Apache Hadoop Ozone: HDFS-compatible object store targeting optimized for billions of small files.
*
FTP
The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a server to a client on a computer network. FTP is built on a client–server model architecture using separate control and dat ...
file system: This stores all its data on remotely accessible FTP servers.
*
Amazon S3
Amazon Simple Storage Service (S3) is a service offered by Amazon Web Services (AWS) that provides object storage through a web service interface. Amazon S3 uses the same scalable storage infrastructure that Amazon.com uses to run its e-commerc ...
(Amazon Simple Storage Service) object storage: This is targeted at clusters hosted on the
Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) is a part of Amazon's cloud-computing platform, Amazon Web Services (AWS), that allows users to rent virtual computers on which to run their own computer applications. EC2 encourages scalable deployment of ap ...
server-on-demand infrastructure. There is no rack-awareness in this file system, as it is all remote.
* Windows Azure Storage Blobs (WASB) file system: This is an extension of HDFS that allows distributions of Hadoop to access data in Azure blob stores without moving the data permanently into the cluster.
A number of third-party file system bridges have also been written, none of which are currently in Hadoop distributions. However, some commercial distributions of Hadoop ship with an alternative file system as the defaultspecifically IBM and
MapR.
* In 2009,
IBM
International Business Machines Corporation (using the trademark IBM), nicknamed Big Blue, is an American Multinational corporation, multinational technology company headquartered in Armonk, New York, and present in over 175 countries. It is ...
discussed running Hadoop over the
IBM General Parallel File System
GPFS (General Parallel File System, brand name IBM Storage Scale and previously IBM Spectrum Scale) is a high-performance clustered file system software developed by IBM. It can be deployed in shared-disk or shared-nothing distributed parallel ...
. The source code was published in October 2009.
* In April 2010, Parascale published the source code to run Hadoop against the Parascale file system.
* In April 2010, Appistry released a Hadoop file system driver for use with its own CloudIQ Storage product.
* In June 2010,
HP discussed a location-aware
IBRIX Fusion file system driver.
* In May 2011,
MapR Technologies Inc. announced the availability of an alternative file system for Hadoop,
MapR FS, which replaced the HDFS file system with a full random-access read/write file system.
JobTracker and TaskTracker: the MapReduce engine
Atop the file systems comes the MapReduce Engine, which consists of one ''JobTracker'', to which client applications submit MapReduce jobs. The JobTracker pushes work to available ''TaskTracker'' nodes in the cluster, striving to keep the work as close to the data as possible. With a rack-aware file system, the JobTracker knows which node contains the data, and which other machines are nearby. If the work cannot be hosted on the actual node where the data resides, priority is given to nodes in the same rack. This reduces network traffic on the main backbone network. If a TaskTracker fails or times out, that part of the job is rescheduled. The TaskTracker on each node spawns a separate
Java virtual machine
A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs as well as programs written in other languages that are also compiled to Java bytecode. The JVM is detailed by a specification that formally descr ...
(JVM) process to prevent the TaskTracker itself from failing if the running job crashes its JVM. A heartbeat is sent from the TaskTracker to the JobTracker every few minutes to check its status. The Job Tracker and TaskTracker status and information is exposed by
Jetty
A jetty is a man-made structure that protrudes from land out into water. A jetty may serve as a breakwater (structure), breakwater, as a walkway, or both; or, in pairs, as a means of constricting a channel. The term derives from the French la ...
and can be viewed from a web browser.
Known limitations of this approach are:
# The allocation of work to TaskTrackers is very simple. Every TaskTracker has a number of available ''slots'' (such as "4 slots"). Every active map or reduce task takes up one slot. The Job Tracker allocates work to the tracker nearest to the data with an available slot. There is no consideration of the current
system load of the allocated machine, and hence its actual availability.
# If one TaskTracker is very slow, it can delay the entire MapReduce job especially towards the end, when everything can end up waiting for the slowest task. With speculative execution enabled, however, a single task can be executed on multiple slave nodes.
Scheduling
By default Hadoop uses
FIFO scheduling, and optionally 5 scheduling priorities to schedule jobs from a work queue. In version 0.19 the job scheduler was refactored out of the JobTracker, while adding the ability to use an alternate scheduler (such as the ''Fair scheduler'' or the ''Capacity scheduler'', described next).
=Fair scheduler
=
The fair scheduler was developed by
Facebook
Facebook is a social media and social networking service owned by the American technology conglomerate Meta Platforms, Meta. Created in 2004 by Mark Zuckerberg with four other Harvard College students and roommates, Eduardo Saverin, Andre ...
. The goal of the fair scheduler is to provide fast response times for small jobs and
Quality of service
Quality of service (QoS) is the description or measurement of the overall performance of a service, such as a telephony or computer network, or a cloud computing service, particularly the performance seen by the users of the network. To quantitat ...
(QoS) for production jobs. The fair scheduler has three basic concepts.
# Jobs are grouped into
pools.
# Each pool is assigned a guaranteed minimum share.
# Excess capacity is split between jobs.
By default, jobs that are uncategorized go into a default pool. Pools have to specify the minimum number of map slots, reduce slots, as well as a limit on the number of running jobs.
=Capacity scheduler
=
The capacity scheduler was developed by Yahoo. The capacity scheduler supports several features that are similar to those of the fair scheduler.
# Queues are allocated a fraction of the total resource capacity.
# Free resources are allocated to queues beyond their total capacity.
# Within a queue, a job with a high level of priority has access to the queue's resources.
There is no
preemption once a job is running.
Difference between Hadoop 1 and Hadoop 2 (YARN)
The biggest difference between Hadoop 1 and Hadoop 2 is the addition of YARN (Yet Another Resource Negotiator), which replaced the MapReduce engine in the first version of Hadoop.
YARN strives to allocate resources to various applications effectively. It runs two daemons, which take care of two different tasks: the ''resource manager'', which does job tracking and resource allocation to applications, the ''application master'', which monitors progress of the execution.
Difference between Hadoop 2 and Hadoop 3
There are important features provided by Hadoop 3. For example, while there is one single ''namenode'' in Hadoop 2, Hadoop 3, enables having multiple name nodes, which solves the single point of failure problem.
In Hadoop 3, there are containers working in principle of
Docker, which reduces time spent on application development.
One of the biggest changes is that Hadoop 3 decreases storage overhead with
erasure coding.
Also, Hadoop 3 permits usage of GPU hardware within the cluster, which is a very substantial benefit to execute deep learning algorithms on a Hadoop cluster.
Other applications
The HDFS is not restricted to MapReduce jobs. It can be used for other applications, many of which are under development at Apache. The list includes the
HBase database, the
Apache Mahout
Apache Mahout is a project of the Apache Software Foundation to produce free implementations of distributed or otherwise scalable machine learning algorithms focused primarily on linear algebra. In the past, many of the implementations use th ...
machine learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task ( ...
system, and the
Apache Hive
Apache Hive is a data warehouse software project. It is built on top of Apache Hadoop for providing data query and analysis. Hive gives an SQL-like Interface (computing), interface to query data stored in various databases and file systems that i ...
data warehouse
In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for Business intelligence, reporting and data analysis and is a core component of business intelligence. Data warehouses are central Re ...
. Theoretically, Hadoop could be used for any workload that is batch-oriented rather than real-time, is very data-intensive, and benefits from
parallel processing. It can also be used to complement a real-time system, such as
lambda architecture,
Apache Storm,
Flink, and
Spark Streaming.
Commercial applications of Hadoop include:
* Log or
clickstream
A click path or clickstream is the sequence of hyperlinks one or more website visitors follows on a given site, presented in the order viewed. A visitor's click path may start within the website or at a separate third party website, often a search ...
analysis
* Marketing analytics
* Machine learning and
data mining
Data mining is the process of extracting and finding patterns in massive data sets involving methods at the intersection of machine learning, statistics, and database systems. Data mining is an interdisciplinary subfield of computer science and ...
* Image processing
*
XML
Extensible Markup Language (XML) is a markup language and file format for storing, transmitting, and reconstructing data. It defines a set of rules for encoding electronic document, documents in a format that is both human-readable and Machine-r ...
message processing
*
Web crawling
Web crawler, sometimes called a spider or spiderbot and often shortened to crawler, is an Internet bot that systematically browses the World Wide Web and that is typically operated by search engines for the purpose of Web indexing (''web spider ...
* Archival work for compliance, including of relational and tabular data
Prominent use cases
On 19 February 2008, Yahoo! Inc. launched what they claimed was the world's largest Hadoop production application. The Yahoo! Search Webmap is a Hadoop application that runs on a Linux cluster with more than 10,000
cores and produced data that was used in every Yahoo! web search query. There are multiple Hadoop clusters at Yahoo! and no HDFS file systems or MapReduce jobs are split across multiple data centers. Every Hadoop cluster node bootstraps the Linux image, including the Hadoop distribution. Work that the clusters perform is known to include the index calculations for the Yahoo! search engine. In June 2009, Yahoo! made the source code of its Hadoop version available to the open-source community.
In 2010, Facebook claimed that they had the largest Hadoop cluster in the world with 21
PB of storage. In June 2012, they announced the data had grown to 100 PB and later that year they announced that the data was growing by roughly half a PB per day.
, Hadoop adoption had become widespread: more than half of the Fortune 50 companies used Hadoop.
Hadoop hosting in the cloud
Hadoop can be deployed in a traditional onsite datacenter as well as in
the cloud. The cloud allows organizations to deploy Hadoop without the need to acquire hardware or specific setup expertise.
Commercial support
A number of companies offer commercial implementations or support for Hadoop.
Branding
The Apache Software Foundation has stated that only software officially released by the Apache Hadoop Project can be called ''Apache Hadoop'' or ''Distributions of Apache Hadoop''. The naming of products and derivative works from other vendors and the term "compatible" are somewhat controversial within the Hadoop developer community.
Papers
Influential papers on the birth, growth, and curation of Hadoop and big data processing include:
Jeffrey Dean, Sanjay Ghemawat (2004
MapReduce: Simplified Data Processing on Large Clusters Google. This paper inspired Doug Cutting to develop an open-source implementation of the Map-Reduce framework. He named it Hadoop, after his son's toy elephant.
* Michael Franklin, Alon Halevy, David Maier (2005
From Databases to Dataspaces: A New Abstraction for Information Management The authors highlight the need for storage systems to accept all data formats and to provide APIs for data access that evolve based on the storage system's understanding of the data.
* Fay Chang et al. (2006
Bigtable: A Distributed Storage System for Structured Data Google.
* Robert Kallman et al. (2008
H-store: a high-performance, distributed main memory transaction processing system
See also
*
Apache Accumulo
Apache Accumulo is a highly scalable sorted, distributed key-value store based on Google's Bigtable. It is a system built on top of Apache Hadoop, Apache ZooKeeper, and Apache Thrift. Written in Java, Accumulo has cell-level access labels and ...
– Secure
Bigtable
Bigtable is a fully managed wide-column and key-value NoSQL database service for large analytical and operational workloads as part of the Google Cloud portfolio.
History
Bigtable development began in 2004.. It is now used by a number of Goo ...
*
Apache Cassandra
Apache Cassandra is a free and open-source software, free and open-source database management system designed to handle large volumes of data across multiple Commodity computing, commodity servers. The system prioritizes availability and scalab ...
, a column-oriented database that supports access from Hadoop
*
Apache CouchDB, a database that uses JSON for documents, JavaScript for MapReduce queries, and regular HTTP for an API
*
Big data
Big data primarily refers to data sets that are too large or complex to be dealt with by traditional data processing, data-processing application software, software. Data with many entries (rows) offer greater statistical power, while data with ...
*
Data-intensive computing
Data-intensive computing is a class of parallel computing applications which use a data parallel approach to process large volumes of data typically terabytes or petabytes in size and typically referred to as big data. Computing applications that ...
*
HPCC –
LexisNexis
LexisNexis is an American data analytics company headquartered in New York, New York. Its products are various databases that are accessed through online portals, including portals for computer-assisted legal research (CALR), newspaper searc ...
Risk Solutions High Performance Computing Cluster
*
Hypertable – HBase alternative
*
Sector/Sphere – Open source distributed storage and processing
*
Slurm Workload Manager
References
Bibliography
*
*
*
*
*
External links
*
{{DEFAULTSORT:Hadoop
Hadoop
Apache Hadoop () is a collection of Open-source software, open-source software utilities for reliable, scalable, distributed computing. It provides a software framework for Clustered file system, distributed storage and processing of big data usin ...
Big data products
Distributed file systems
Free software for cloud computing
Free software programmed in Java (programming language)
Free system software
Software using the Apache license