Hadamard's Dynamical System
   HOME

TheInfoList



OR:

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
and
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, the Hadamard dynamical system (also called Hadamard's billiard or the Hadamard–Gutzwiller model) is a
chaotic Chaotic was originally a Danish trading card game. It expanded to an online game in America which then became a television program based on the game. The program aired on 4Kids TV (Fox affiliates, nationwide), Jetix, The CW4Kids, Cartoon Netwo ...
dynamical system In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space, such as in a parametric curve. Examples include the mathematical models ...
, a type of
dynamical billiards A dynamical billiard is a dynamical system in which a particle alternates between free motion (typically as a straight line) and specular reflections from a boundary. When the particle hits the boundary it reflects from it Elastic collision, witho ...
. Introduced by
Jacques Hadamard Jacques Salomon Hadamard (; 8 December 1865 – 17 October 1963) was a French mathematician who made major contributions in number theory, complex analysis, differential geometry, and partial differential equations. Biography The son of a tea ...
in 1898, and studied by
Martin Gutzwiller Martin Charles Gutzwiller (12 October 1925 – 3 March 2014) was a Swiss-American physicist, known for his work on field theory, quantum chaos, and complex systems. He spent most of his career at IBM Research, and was also an adjunct prof ...
in the 1980s, The system considers the motion of a free (
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. Types of friction include dry, fluid, lubricated, skin, and internal -- an incomplete list. The study of t ...
less)
particle In the physical sciences, a particle (or corpuscle in older texts) is a small localized object which can be described by several physical or chemical properties, such as volume, density, or mass. They vary greatly in size or quantity, from s ...
on a surface with constant negative
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
.


History

It is probably the first dynamical system to be proven
chaotic Chaotic was originally a Danish trading card game. It expanded to an online game in America which then became a television program based on the game. The program aired on 4Kids TV (Fox affiliates, nationwide), Jetix, The CW4Kids, Cartoon Netwo ...
, essentially proving that it bounces back and forward between multiple limit points in some shape of ergodic manner Hadamard was able to show that every particle trajectory moves away from every other in an unstable and hyperbolic fashion, with a geometrical argument about the angles in between trajectories. In modern terminology this means that that the system is always unstable, what is more important is that all trajectories have a positive
Lyapunov exponent In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectory, trajectories. Quantitatively, two trajectories in phase sp ...
and therefore chaotic behaviour. Frank Steiner argues that Hadamard's study should be considered to be the first-ever examination of a chaotic dynamical system, and that Hadamard should be considered the first discoverer of chaos. He points out that the study was widely disseminated, and considers the impact of the ideas on the thinking of
Albert Einstein Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
and
Ernst Mach Ernst Waldfried Josef Wenzel Mach ( ; ; 18 February 1838 – 19 February 1916) was an Austrian physicist and philosopher, who contributed to the understanding of the physics of shock waves. The ratio of the speed of a flow or object to that of ...
. The system is particularly important in that in 1963,
Yakov Sinai Yakov Grigorevich Sinai (; born September 21, 1935) is a Russian–American mathematician known for his work on dynamical systems. He contributed to the modern metric theory of dynamical systems and connected the world of deterministic (dynam ...
, in studying Sinai's billiards as a model of the classical ensemble of a Boltzmann–Gibbs gas, was able to show that the motion of the atoms in the gas follow the trajectories in the Hadamard dynamical system.


Exposition

The motion studied is that of a free particle sliding frictionlessly on the surface, namely, one having the
Hamiltonian Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian ...
:H(p,q)=\frac p_i p_j g^(q) where ''m'' is the mass of the particle, q^i, i=1,2 are the coordinates on the manifold, p_i are the
conjugate momenta In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of cla ...
: :p_i=mg_ \frac and :ds^2 = g_(q) dq^i dq^j\, is the
metric tensor In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows ...
on the manifold. Because this is the free-particle Hamiltonian, the solution to the Hamilton–Jacobi equations of motion are simply given by the
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s on the manifold. Hadamard was able to show that all geodesics are unstable. All geodesics diverge exponentially from one another, as e^ with positive
Lyapunov exponent In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectory, trajectories. Quantitatively, two trajectories in phase sp ...
:\lambda = \sqrt with ''E'' the energy of a trajectory, and K=-1/R^2 being the constant negative curvature of the surface.


Surfaces with negative curvature

The
Bolza surface In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve (introduced by ), is a compact Riemann surface of genus 2 with the highest possible order of the conformal automorphism group in this genus, namely GL_2(3) of order 48 ...
, can be such an example of constant negative curvature, i.e, a two-dimensional surface of genus two (a donut with two holes) and constant negative
curvature In mathematics, curvature is any of several strongly related concepts in geometry that intuitively measure the amount by which a curve deviates from being a straight line or by which a surface deviates from being a plane. If a curve or su ...
; this is a compact
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
.


References

{{Reflist Chaotic maps Ergodic theory