
An H II region is a region of interstellar
atomic hydrogen
A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
that is
ionized
Ionization or ionisation is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule i ...
.
It is typically in a
molecular cloud
A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
of partially ionized
gas
Gas is a state of matter that has neither a fixed volume nor a fixed shape and is a compressible fluid. A ''pure gas'' is made up of individual atoms (e.g. a noble gas like neon) or molecules of either a single type of atom ( elements such as ...
in which
star formation
Star formation is the process by which dense regions within molecular clouds in interstellar space—sometimes referred to as "stellar nurseries" or "star-forming regions"—Jeans instability, collapse and form stars. As a branch of astronomy, sta ...
has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic centimetre. The
Orion Nebula
The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the Orion (constellation), constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It ...
, now known to be an H II region, was observed in 1610 by
Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered.
The regions may be of any shape because the distribution of the stars and gas inside them is irregular.
The short-lived blue stars created in these regions emit copious amounts of
ultraviolet
Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
light that ionize the surrounding gas. H II regions—sometimes several hundred
light-year
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astr ...
s across—are often associated with
giant molecular clouds. They often appear clumpy and filamentary, sometimes showing intricate shapes such as the
Horsehead Nebula. H II regions may give birth to thousands of stars over a period of several million years. In the end,
supernova
A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
explosions and strong
stellar wind
A stellar wind is a flow of gas ejected from the stellar atmosphere, upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spheri ...
s from the most massive stars in the resulting
star cluster
A star cluster is a group of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters, tight groups of ten thousand to millions of old stars which are gravitationally bound; and open cluster ...
disperse the gases of the H II region, leaving a cluster of stars which have formed.
H II regions can be observed at considerable distances in the universe, and the study of extragalactic H II regions is important in determining the distances and chemical composition of
galaxies
A galaxy is a system of stars, stellar remnants, interstellar gas, dust, and dark matter bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar Sys ...
.
Spiral
In mathematics, a spiral is a curve which emanates from a point, moving further away as it revolves around the point. It is a subtype of whorled patterns, a broad group that also includes concentric objects.
Two-dimensional
A two-dimension ...
and
irregular galaxies contain many H II regions, while
elliptical galaxies are almost devoid of them. In spiral galaxies, including our
Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
, H II regions are concentrated in the
spiral arm
Spiral arms are a defining feature of spiral galaxies. They manifest as spiral-shaped regions of enhanced brightness within the galactic disc. Typically, spiral galaxies exhibit two or more spiral arms. The collective configuration of these arms i ...
s, while in irregular galaxies they are distributed chaotically. Some galaxies contain huge H II regions, which may contain tens of thousands of stars. Examples include the
30 Doradus
The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth's perspective).
Discovery
The Tarantula Nebula was observed by Nicolas-Louis de Lacaille dur ...
region in the
Large Magellanic Cloud
The Large Magellanic Cloud (LMC) is a dwarf galaxy and satellite galaxy of the Milky Way. At a distance of around , the LMC is the second- or third-closest galaxy to the Milky Way, after the Sagittarius Dwarf Spheroidal Galaxy, Sagittarius Dwarf ...
and
NGC 604
NGC 604 is an H II region inside the Triangulum Galaxy. It was discovered by William Herschel on September 11, 1784. It is among the largest H II regions in the Local Group of galaxies; at the galaxy's estimated distance of 2.7 million light-ye ...
in the
Triangulum Galaxy
The Triangulum Galaxy is a spiral galaxy 2.73 million light-years (ly) from Earth in the constellation Triangulum. It is catalogued as Messier 33 or NGC 598. With the D25 isophotal diameter of , the Triangulum Galaxy is the third-largest me ...
.
Terminology
The term H II is pronounced "H two". "H" is the chemical symbol for hydrogen, and "II" is the Roman numeral for 2. The convention in
astronomy
Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
is to use the Roman numeral I for neutral atoms, II for singly-ionised, III for doubly-ionised, and so on. H II, or H
+, consists of free
protons
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' ( elementary charge). Its mass is slightly less than the mass of a neutron and approximately times the mass of an electron (the pro ...
. An
H I region consists of
neutral atomic hydrogen, and a
molecular cloud
A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen, ...
of
molecular
A molecule is a group of two or more atoms that are held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions that satisfy this criterion. In quantum physics, organic chemistry, ...
hydrogen, H
2.
Observations

A few of the brightest H II regions are visible to the
naked eye
Naked eye, also called bare eye or unaided eye, is the practice of engaging in visual perception unaided by a magnification, magnifying, Optical telescope#Light-gathering power, light-collecting optical instrument, such as a telescope or microsc ...
. However, none seem to have been noticed before the advent of the
telescope
A telescope is a device used to observe distant objects by their emission, Absorption (electromagnetic radiation), absorption, or Reflection (physics), reflection of electromagnetic radiation. Originally, it was an optical instrument using len ...
in the early 17th century. Even
Galileo
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei ( , , ) or mononymously as Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a poly ...
did not notice the
Orion Nebula
The Orion Nebula (also known as Messier 42, M42, or NGC 1976) is a diffuse nebula in the Milky Way situated south of Orion's Belt in the Orion (constellation), constellation of Orion, and is known as the middle "star" in the "sword" of Orion. It ...
when he first observed the
star cluster
A star cluster is a group of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters, tight groups of ten thousand to millions of old stars which are gravitationally bound; and open cluster ...
within it (previously cataloged as a single star, θ Orionis, by
Johann Bayer). The French observer
Nicolas-Claude Fabri de Peiresc is credited with the discovery of the Orion Nebula in 1610.
Since that early observation large numbers of H II regions have been discovered in the Milky Way and other galaxies.
William Herschel
Frederick William Herschel ( ; ; 15 November 1738 – 25 August 1822) was a German-British astronomer and composer. He frequently collaborated with his younger sister and fellow astronomer Caroline Herschel. Born in the Electorate of Hanover ...
observed the Orion Nebula in 1774, and described it later as "an unformed fiery mist, the chaotic material of future suns".
In early days astronomers distinguished between "diffuse
nebula
A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in ...
e" (now known to be H II regions), which retained their fuzzy appearance under magnification through a large telescope, and nebulae that could be resolved into stars, now known to be galaxies external to our own.
Confirmation of Herschel's hypothesis of star formation had to wait another hundred years, when
William Huggins together with his wife
Mary Huggins turned his
spectroscope
An optical spectrometer (spectrophotometer, spectrograph or spectroscope) is an instrument used to measure properties of light over a specific portion of the electromagnetic spectrum, typically used in spectroscopic analysis to identify mate ...
on various nebulae. Some, such as the
Andromeda Nebula, had spectra quite similar to those of
star
A star is a luminous spheroid of plasma (physics), plasma held together by Self-gravitation, self-gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night sk ...
s, but turned out to be galaxies consisting of hundreds of millions of individual stars. Others looked very different. Rather than a strong continuum with absorption lines superimposed, the Orion Nebula and other similar objects showed only a small number of
emission line
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used ...
s.
In
planetary nebulae
A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionization, ionized gas ejected from red giant stars late in their lives.
The term "planetary nebula" is a misnomer because they are unrelated to pla ...
, the brightest of these spectral lines was at a
wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of 500.7
nanometre
330px, Different lengths as in respect to the Molecule">molecular scale.
The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm), or nanometer (American spelling), is a unit of length ...
s, which did not correspond with a line of any known
chemical element
A chemical element is a chemical substance whose atoms all have the same number of protons. The number of protons is called the atomic number of that element. For example, oxygen has an atomic number of 8: each oxygen atom has 8 protons in its ...
. At first it was hypothesized that the line might be due to an unknown element, which was named
nebulium
Nebulium was a proposed chemical element, element found in astronomical observation of a nebula by William Huggins in 1864. The strong green emission spectrum, emission lines of the Cat's Eye Nebula, discovered using spectroscopy, led to the post ...
—a similar idea had led to the discovery of
helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
through analysis of the
Sun
The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
's spectrum in 1868.
However, while helium was isolated on earth soon after its discovery in the spectrum of the sun, nebulium was not. In the early 20th century,
Henry Norris Russell proposed that rather than being a new element, the line at 500.7 nm was due to a familiar element in unfamiliar conditions.

Interstellar matter, considered dense in an astronomical context, is at high vacuum by laboratory standards. Physicists showed in the 1920s that in gas at extremely low
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
,
electron
The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
s can populate excited
metastable
In chemistry and physics, metastability is an intermediate energetic state within a dynamical system other than the system's state of least energy.
A ball resting in a hollow on a slope is a simple example of metastability. If the ball is onl ...
energy level
A quantum mechanics, quantum mechanical system or particle that is bound state, bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical mechanics, classical pa ...
s in
atom
Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
s and
ion
An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by convent ...
s, which at higher densities are rapidly de-excited by collisions.
Electron transitions from these levels in
doubly ionized oxygen
In astronomy and atomic physics, doubly ionized oxygen is the ion O2+ (O III in spectroscopic notation).
Ion
Its emission forbidden lines in the visible spectrum fall primarily at the wavelength 500.7 nm, and secondarily at 495.9 n ...
give rise to the 500.7 nm line.
These
spectral lines
A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used ...
, which can only be seen in very low density gases, are called
forbidden lines. Spectroscopic observations thus showed that planetary nebulae consisted largely of extremely rarefied ionised oxygen gas (OIII).
During the 20th century, observations showed that H II regions often contained
hot, bright stars.
These stars are many times more massive than the Sun, and are the shortest-lived stars, with total lifetimes of only a few million years (compared to stars like the Sun, which live for several billion years). Therefore, it was surmised that H II regions must be regions in which new stars were forming.
Over a period of several million years, a cluster of stars will form in an H II region, before
radiation pressure
Radiation pressure (also known as light pressure) is mechanical pressure exerted upon a surface due to the exchange of momentum between the object and the electromagnetic field. This includes the momentum of light or electromagnetic radiation of ...
from the hot young stars causes the nebula to disperse.
Origin and lifetime

The precursor to an H II region is a
giant molecular cloud
A molecular cloud—sometimes called a stellar nursery if star formation is occurring within—is a type of interstellar cloud of which the density and size permit absorption nebulae, the formation of molecules (most commonly molecular hydrogen ...
(GMC). A GMC is a cold (10–20
K) and dense cloud consisting mostly of
molecular hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter ...
.
GMCs can exist in a stable state for long periods of time, but shock waves due to
supernova
A supernova (: supernovae or supernovas) is a powerful and luminous explosion of a star. A supernova occurs during the last stellar evolution, evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion ...
e, collisions between clouds, and magnetic interactions can trigger its collapse. When this happens, via a process of collapse and fragmentation of the cloud, stars are born (see
stellar evolution
Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is consi ...
for a lengthier description).
As stars are born within a GMC, the most massive will reach temperatures hot enough to
ionise the surrounding gas.
Soon after the formation of an ionising radiation field, energetic
photon
A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s create an ionisation front, which sweeps through the surrounding gas at
supersonic
Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
speeds. At greater and greater distances from the ionising star, the ionisation front slows, while the pressure of the newly ionised gas causes the ionised volume to expand. Eventually, the ionisation front slows to
subsonic speeds, and is overtaken by the shock front caused by the expansion of the material ejected from the nebula. The H II region has been born.
The lifetime of an H II region is of the order of a few million years.
Radiation pressure from the hot young stars will eventually drive most of the gas away. In fact, the whole process tends to be very inefficient, with less than 10 percent of the gas in the H II region forming into stars before the rest is blown off.
Contributing to the loss of gas are the supernova explosions of the most massive stars, which will occur after only 1–2 million years.
Destruction of stellar nurseries

Stars form in clumps of cool molecular gas that hide the nascent stars. It is only when the radiation pressure from a star drives away its 'cocoon' that it becomes visible. The hot, blue stars that are powerful enough to ionize significant amounts of hydrogen and form H II regions will do this quickly, and light up the region in which they just formed. The dense regions which contain younger or less massive still-forming stars and which have not yet blown away the material from which they are forming are often seen in silhouette against the rest of the ionised nebula.
Bart Bok
Bartholomeus Jan "Bart" Bok (April 28, 1906 – August 5, 1983) was a Dutch-American astronomer, teacher, and lecturer. He is best known for his work on the structure and evolution of the Milky Way galaxy, and for the discovery of Bok globules, w ...
and E. F. Reilly searched astronomical photographs in the 1940s for "relatively small dark nebulae", following suggestions that stars might be formed from condensations in the interstellar medium; they found several such "approximately circular or oval dark objects of small size", which they referred to as "globules", since referred to as
Bok globule
In astronomy, Bok globules are isolated and relatively small dark nebulae containing dense cosmic dust and gas from which star formation may take place. Bok globules are found within H II regions, and typically have a mass of about two to 50 sol ...
s.
Bok proposed at the December 1946 Harvard Observatory Centennial Symposia that these globules were likely sites of star formation. It was confirmed in 1990 that they were indeed stellar birthplaces.
The hot young stars dissipate these globules, as the radiation from the stars powering the H II region drives the material away. In this sense, the stars which generate H II regions act to destroy stellar nurseries. In doing so, however, one last burst of star formation may be triggered, as radiation pressure and mechanical pressure from supernova may act to squeeze globules, thereby enhancing the density within them.
The young stars in H II regions show evidence for containing planetary systems. The
Hubble Space Telescope
The Hubble Space Telescope (HST or Hubble) is a space telescope that was launched into low Earth orbit in 1990 and remains in operation. It was not the Orbiting Solar Observatory, first space telescope, but it is one of the largest and most ...
has revealed hundreds of ''protoplanetary disks'' (
proplyds) in the Orion Nebula.
At least half the young stars in the Orion Nebula appear to be surrounded by disks of gas and dust,
thought to contain many times as much matter as would be needed to create a planetary system like the
Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
.
Characteristics
Physical properties

H II regions vary greatly in their physical properties. They range in size from so-called ''ultra-compact'' (UCHII) regions perhaps only a
light-year
A light-year, alternatively spelled light year (ly or lyr), is a unit of length used to express astronomical distances and is equal to exactly , which is approximately 9.46 trillion km or 5.88 trillion mi. As defined by the International Astr ...
or less across, to giant H II regions several hundred light-years across.
[ Their size is also known as the Stromgren radius and essentially depends on the intensity of the source of ionising photons and the density of the region. Their densities range from over a million particles per cm3 in the ultra-compact H II regions to only a few particles per cm3 in the largest and most extended regions. This implies total masses between perhaps 100 and 105 ]solar masses
The solar mass () is a frequently used unit of mass in astronomy, equal to approximately . It is approximately equal to the mass of the Sun. It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies ...
.
There are also "ultra-dense H II" regions (UDHII).
Depending on the size of an H II region there may be several thousand stars within it. This makes H II regions more complicated than planetary nebulae, which have only one central ionising source. Typically H II regions reach temperatures of 10,000 K. They are mostly ionised gases with weak magnetic field
A magnetic field (sometimes called B-field) is a physical field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular ...
s with strengths of several nanoteslas. Nevertheless, H II regions are almost always associated with a cold molecular gas, which originated from the same parent GMC. Magnetic fields are produced by these weak moving electric charges in the ionised gas, suggesting that H II regions might contain electric field
An electric field (sometimes called E-field) is a field (physics), physical field that surrounds electrically charged particles such as electrons. In classical electromagnetism, the electric field of a single charge (or group of charges) descri ...
s.
A number of H II regions also show signs of being permeated by a plasma with temperatures exceeding 10,000,000 K, sufficiently hot to emit X-rays. X-ray observatories such as Einstein
Albert Einstein (14 March 187918 April 1955) was a German-born theoretical physicist who is best known for developing the theory of relativity. Einstein also made important contributions to quantum mechanics. His mass–energy equivalence f ...
and Chandra
Chandra (), also known as Soma (), is the Hindu god of the Moon, and is associated with the night, plants and vegetation. He is one of the Navagraha (nine planets of Hinduism) and Dikpala (guardians of the directions).
Etymology and other ...
have noted diffuse X-ray emissions in a number of star-forming regions, notably the Orion Nebula, Messier 17, and the Carina Nebula. The hot gas is likely supplied by the strong stellar winds from O-type stars, which may be heated by supersonic shock waves in the winds, through collisions between winds from different stars, or through colliding winds channeled by magnetic fields. This plasma will rapidly expand to fill available cavities in the molecular clouds due to the high speed of sound in the gas at this temperature. It will also leak out through holes in the periphery of the H II region, which appears to be happening in Messier 17.
Chemically, H II regions consist of about 90% hydrogen. The strongest hydrogen emission line, the H-alpha
Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is em ...
line at 656.3 nm, gives H II regions their characteristic red colour. (This emission line comes from excited un-ionized hydrogen.) H-beta is also emitted, but at approximately 1/3 of the intensity of H-alpha. Most of the rest of an H II region consists of helium
Helium (from ) is a chemical element; it has chemical symbol, symbol He and atomic number 2. It is a colorless, odorless, non-toxic, inert gas, inert, monatomic gas and the first in the noble gas group in the periodic table. Its boiling point is ...
, with trace amounts of heavier elements. Across the galaxy, it is found that the amount of heavy elements in H II regions decreases with increasing distance from the galactic centre. This is because over the lifetime of the galaxy, star formation rates have been greater in the denser central regions, resulting in greater enrichment of those regions of the interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
with the products of nucleosynthesis
Nucleosynthesis is the process that creates new atomic nuclei from pre-existing nucleons (protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the Big Bang, through nuclear reactions in ...
.
Numbers and distribution
H II regions are found only in spiral galaxies
Spiral galaxies form a class of galaxy originally described by Edwin Hubble in his 1936 work ''The Realm of the Nebulae'' like the Milky Way and irregular galaxies. They are not seen in elliptical galaxies
An elliptical galaxy is a type of galaxy with an approximately ellipsoidal shape and a smooth, nearly featureless image. They are one of the three main classes of galaxy described by Edwin Hubble in his Hubble sequence and 1936 work ''The Re ...
. In irregular galaxies, they may be dispersed throughout the galaxy, but in spirals they are most abundant within the spiral arms. A large spiral galaxy may contain thousands of H II regions.
The reason H II regions rarely appear in elliptical galaxies is that ellipticals are believed to form through galaxy mergers. In galaxy cluster
A galaxy cluster, or a cluster of galaxies, is a structure that consists of anywhere from hundreds to thousands of galaxies that are bound together by gravity, with typical masses ranging from 1014 to 1015 solar masses. Clusters consist of galax ...
s, such mergers are frequent. When galaxies collide, individual stars almost never collide, but the GMCs and H II regions in the colliding galaxies are severely agitated. Under these conditions, enormous bursts of star formation are triggered, so rapid that most of the gas is converted into stars rather than the normal rate of 10% or less.
Galaxies undergoing such rapid star formation are known as starburst galaxies. The post-merger elliptical galaxy has a very low gas content, and so H II regions can no longer form. Twenty-first century observations have shown that a very small number of H II regions exist outside galaxies altogether. These intergalactic H II regions may be the remnants of tidal disruptions of small galaxies, and in some cases may represent a new generation of stars in a galaxy's most recently accreted gas.
Morphology
H II regions come in an enormous variety of sizes. They are usually clumpy and inhomogeneous on all scales from the smallest to largest. Each star within an H II region ionises a roughly spherical region—known as a ''Strömgren sphere''—of the surrounding gas, but the combination of ionisation spheres of multiple stars within a H II region and the expansion of the heated nebula into surrounding gases creates sharp density gradients that result in complex shapes. Supernova explosions may also sculpt H II regions. In some cases, the formation of a large star cluster within an H II region results in the region being hollowed out from within. This is the case for NGC 604
NGC 604 is an H II region inside the Triangulum Galaxy. It was discovered by William Herschel on September 11, 1784. It is among the largest H II regions in the Local Group of galaxies; at the galaxy's estimated distance of 2.7 million light-ye ...
, a giant H II region in the Triangulum Galaxy
The Triangulum Galaxy is a spiral galaxy 2.73 million light-years (ly) from Earth in the constellation Triangulum. It is catalogued as Messier 33 or NGC 598. With the D25 isophotal diameter of , the Triangulum Galaxy is the third-largest me ...
. For a H II region which cannot be resolved, some information on the spatial structure (the electron density
Electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial variables and is typical ...
as a function of the distance from the center, and an estimate of the clumpiness) can be inferred by performing an inverse Laplace transform
In mathematics, the inverse Laplace transform of a function F(s) is a real function f(t) that is piecewise- continuous, exponentially-restricted (that is, , f(t), \leq Me^ \forall t \geq 0 for some constants M > 0 and \alpha \in \mathbb) and h ...
on the frequency spectrum.
Notable regions
Notable Galactic H II regions include the Orion Nebula, the Eta Carinae Nebula, and the Berkeley 59 / Cepheus OB4 Complex. The Orion Nebula, about 500 pc (1,500 light-years) from Earth, is part of OMC-1, a giant molecular cloud that, if visible, would be seen to fill most of the constellation of Orion. The Horsehead Nebula and Barnard's Loop are two other illuminated parts of this cloud of gas.[
*
* ] The Orion Nebula is actually a thin layer of ionised gas on the outer border of the OMC-1 cloud. The stars in the Trapezium cluster, and especially θ1 Orionis, are responsible for this ionisation.
The Large Magellanic Cloud
The Large Magellanic Cloud (LMC) is a dwarf galaxy and satellite galaxy of the Milky Way. At a distance of around , the LMC is the second- or third-closest galaxy to the Milky Way, after the Sagittarius Dwarf Spheroidal Galaxy, Sagittarius Dwarf ...
, a satellite galaxy of the Milky Way
The Milky Way or Milky Way Galaxy is the galaxy that includes the Solar System, with the name describing the #Appearance, galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars in other arms of the galax ...
at about 50 kpc (), contains a giant H II region called the Tarantula Nebula
The Tarantula Nebula (also known as 30 Doradus) is a large H II region in the Large Magellanic Cloud (LMC), forming its south-east corner (from Earth, Earth's perspective).
Discovery
The Tarantula Nebula was observed by Nicolas-Louis de Lacaill ...
. Measuring at about () across, this nebula is the most massive and the second-largest H II region in the Local Group
The Local Group is the galaxy group that includes the Milky Way, where Earth is located. It has a total diameter of roughly , and a total mass of the order of .
It consists of two collections of galaxies in a " dumbbell" shape; the Milky Way ...
. It is much bigger than the Orion Nebula, and is forming thousands of stars, some with masses of over 100 times that of the sun— OB and Wolf-Rayet stars. If the Tarantula Nebula were as close to Earth as the Orion Nebula, it would shine about as brightly as the full moon in the night sky. The supernova SN 1987A
SN 1987A was a Type II supernova in the Large Magellanic Cloud, a dwarf satellite galaxy of the Milky Way. It occurred approximately from Earth and was the closest observed supernova since Kepler's Supernova in 1604. Light and neutrinos ...
occurred in the outskirts of the Tarantula Nebula.
Another giant H II region—NGC 604
NGC 604 is an H II region inside the Triangulum Galaxy. It was discovered by William Herschel on September 11, 1784. It is among the largest H II regions in the Local Group of galaxies; at the galaxy's estimated distance of 2.7 million light-ye ...
is located in M33 spiral galaxy, which is at 817 kpc (2.66 million light years). Measuring at approximately () across, NGC 604 is the second-most-massive H II region in the Local Group after the Tarantula Nebula, although it is slightly larger in size than the latter. It contains around 200 hot OB and Wolf-Rayet stars, which heat the gas inside it to millions of degrees, producing bright X-ray
An X-ray (also known in many languages as Röntgen radiation) is a form of high-energy electromagnetic radiation with a wavelength shorter than those of ultraviolet rays and longer than those of gamma rays. Roughly, X-rays have a wavelength ran ...
emissions. The total mass of the hot gas in NGC 604 is about 6,000 Solar masses.
Current issues
As with planetary nebulae, estimates of the abundance of elements in H II regions are subject to some uncertainty. There are two different ways of determining the abundance of metals (metals in this case are elements other than hydrogen and helium) in nebulae, which rely on different types of spectral lines, and large discrepancies are sometimes seen between the results derived from the two methods. Some astronomers put this down to the presence of small temperature fluctuations within H II regions; others claim that the discrepancies are too large to be explained by temperature effects, and hypothesise the existence of cold knots containing very little hydrogen to explain the observations.
The full details of massive star formation within H II regions are not yet well known. Two major problems hamper research in this area. First, the distance from Earth to large H II regions is considerable, with the nearest H II ( California Nebula) region at 300 pc (1,000 light-years); other H II regions are several times that distance from Earth. Secondly, the formation of these stars is deeply obscured by dust, and visible light
Light, visible light, or visible radiation is electromagnetic radiation that can be perceived by the human eye. Visible light spans the visible spectrum and is usually defined as having wavelengths in the range of 400–700 nanometres (nm ...
observations are impossible. Radio
Radio is the technology of communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connec ...
and infrared
Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
light can penetrate the dust, but the youngest stars may not emit much light at these wavelength
In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
s.[
]
See also
* Emission nebula
An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission n ...
* Reflection nebula
In astronomy, reflection nebulae are interstellar cloud, clouds of Cosmic dust, interstellar dust which might reflect the light of a nearby star or stars. The energy from the nearby stars is insufficient to Ionization, ionize the gas of the nebu ...
* Astronomical object
An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
* H I region
An HI region or H I region (read ''H one'') is a cloud in the interstellar medium composed of neutral atomic hydrogen (HI), in addition to the local abundance of helium and other elements. (H is the chemical symbol for hydrogen, and "I" is the Ro ...
* Planetary nebula
A planetary nebula is a type of emission nebula consisting of an expanding, glowing shell of ionized gas ejected from red giant stars late in their lives.
The term "planetary nebula" is a misnomer because they are unrelated to planets. The ...
* Protoplanetary nebula
* Astronomical spectroscopy
Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the electromagnetic spectrum, spectrum of electromagnetic radiation, including Visible light astronomy, visible light, Ultraviolet astronomy, ultr ...
* Interstellar medium
The interstellar medium (ISM) is the matter and radiation that exists in the outer space, space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as cosmic dust, dust and cosmic rays. It f ...
References
External links
Hubble images of nebulae including several H II regions
{{DEFAULTSORT:H Ii Region
Nebulae