H Alpha
   HOME

TheInfoList



OR:

Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible
spectral line A spectral line is a weaker or stronger region in an otherwise uniform and continuous spectrum. It may result from emission (electromagnetic radiation), emission or absorption (electromagnetic radiation), absorption of light in a narrow frequency ...
of the
hydrogen atom A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb for ...
with a wavelength of 656.28  nm in air and 656.46 nm in vacuum. It is the first spectral line in the
Balmer series The Balmer series, or Balmer lines in atomic physics, is one of a set of hydrogen spectral series, six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empiri ...
and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level. H-alpha has applications in
astronomy Astronomy is a natural science that studies celestial objects and the phenomena that occur in the cosmos. It uses mathematics, physics, and chemistry in order to explain their origin and their overall evolution. Objects of interest includ ...
where its emission can be observed from
emission nebula An emission nebula is a nebula formed of ionized gases that emit light of various wavelengths. The most common source of ionization is high-energy ultraviolet photons emitted from a nearby hot star. Among the several different types of emission n ...
e and from features in the
Sun The Sun is the star at the centre of the Solar System. It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light a ...
's
atmosphere An atmosphere () is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A stellar atmosph ...
, including
solar prominence In solar physics, a prominence, sometimes referred to as a filament, is a large Plasma (physics), plasma and magnetic field structure extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface ...
s and the
chromosphere A chromosphere ("sphere of color", from the Ancient Greek words χρῶμα (''khrôma'') 'color' and σφαῖρα (''sphaîra'') 'sphere') is the second layer of a Stellar atmosphere, star's atmosphere, located above the photosphere and below t ...
.


Balmer series

According to the
Bohr model In atomic physics, the Bohr model or Rutherford–Bohr model was a model of the atom that incorporated some early quantum concepts. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford's nuclear Rutherford model, model, i ...
of the
atom Atoms are the basic particles of the chemical elements. An atom consists of a atomic nucleus, nucleus of protons and generally neutrons, surrounded by an electromagnetically bound swarm of electrons. The chemical elements are distinguished fr ...
,
electrons The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
exist in quantized energy levels surrounding the atom's
nucleus Nucleus (: nuclei) is a Latin word for the seed inside a fruit. It most often refers to: *Atomic nucleus, the very dense central region of an atom *Cell nucleus, a central organelle of a eukaryotic cell, containing most of the cell's DNA Nucleu ...
. These energy levels are described by the
principal quantum number In quantum mechanics, the principal quantum number (''n'') of an electron in an atom indicates which electron shell or energy level it is in. Its values are natural numbers (1, 2, 3, ...). Hydrogen and Helium, at their lowest energies, have just ...
''n'' = 1, 2, 3, ... . Electrons may only exist in these states, and may only transit between these states. The set of transitions from ''n'' ≥ 3 to ''n'' = 2 is called the
Balmer series The Balmer series, or Balmer lines in atomic physics, is one of a set of hydrogen spectral series, six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empiri ...
and its members are named sequentially by Greek letters: *''n'' = 3 to ''n'' = 2 is called Balmer-alpha or H-alpha, *''n'' = 4 to ''n'' = 2 is called Balmer-beta or H-beta, *''n'' = 5 to ''n'' = 2 is called Balmer-gamma or H-gamma, etc. For the
Lyman series In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from ''n'' ≥ 2 to ''n'' = 1 (where ''n'' is the princip ...
the naming convention is: *''n'' = 2 to ''n'' = 1 is called Lyman-alpha, *''n'' = 3 to ''n'' = 1 is called Lyman-beta, etc. H-alpha has a
wavelength In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats. In other words, it is the distance between consecutive corresponding points of the same ''phase (waves ...
of 656.281  nm, is visible in the red part of the
electromagnetic spectrum The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band. From low to high ...
, and is the easiest way for astronomers to trace the ionized hydrogen content of gas clouds. Since it takes nearly as much energy to excite the hydrogen atom's electron from ''n'' = 1 to ''n'' = 3 (12.1 eV, via the
Rydberg formula In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was ...
) as it does to ionize the hydrogen atom (13.6 eV), ionization is far more probable than excitation to the ''n'' = 3 level. After ionization, the electron and proton recombine to form a new hydrogen atom. In the new atom, the electron may begin in any energy level, and subsequently cascades to the ground state (''n'' = 1), emitting
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that ...
with each transition. Approximately half the time, this cascade will include the ''n'' = 3 to ''n'' = 2 transition and the atom will emit H-alpha light. Therefore, the H-alpha line occurs where hydrogen is being ionized. The H-alpha line saturates (self-absorbs) relatively easily because hydrogen is the primary component of
nebulae A nebula (; or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral, or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regions, such as in the Pillars of Creation in th ...
, so while it can indicate the shape and extent of the cloud, it cannot be used to accurately determine the cloud's mass. Instead, molecules such as
carbon dioxide Carbon dioxide is a chemical compound with the chemical formula . It is made up of molecules that each have one carbon atom covalent bond, covalently double bonded to two oxygen atoms. It is found in a gas state at room temperature and at norma ...
,
carbon monoxide Carbon monoxide (chemical formula CO) is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the si ...
,
formaldehyde Formaldehyde ( , ) (systematic name methanal) is an organic compound with the chemical formula and structure , more precisely . The compound is a pungent, colourless gas that polymerises spontaneously into paraformaldehyde. It is stored as ...
,
ammonia Ammonia is an inorganic chemical compound of nitrogen and hydrogen with the chemical formula, formula . A Binary compounds of hydrogen, stable binary hydride and the simplest pnictogen hydride, ammonia is a colourless gas with a distinctive pu ...
, or
acetonitrile Acetonitrile, often abbreviated MeCN (methyl cyanide), is the chemical compound with the formula and structure . This colourless liquid is the simplest organic nitrile (hydrogen cyanide is a simpler nitrile, but the cyanide anion is not class ...
are typically used to determine the mass of a cloud.


Filter

An H-alpha filter is an
optical filter An optical filter is a device that selectively transmits light of different wavelengths, usually implemented as a glass plane or plastic device in the optical path, which are either dyed in the bulk or have interference coatings. The optic ...
designed to transmit a narrow
bandwidth Bandwidth commonly refers to: * Bandwidth (signal processing) or ''analog bandwidth'', ''frequency bandwidth'', or ''radio bandwidth'', a measure of the width of a frequency range * Bandwidth (computing), the rate of data transfer, bit rate or thr ...
of light generally centred on the H-alpha wavelength. These filters can be
dichroic filter In optics, a dichroic material is either one which causes visible light to be split up into distinct beams of different wavelengths (colours) (not to be confused with dispersion), or one in which light rays having different polarizations are ab ...
s manufactured by multiple (~50) vacuum-deposited layers. These layers are selected to produce
interference Interference is the act of interfering, invading, or poaching. Interference may also refer to: Communications * Interference (communication), anything which alters, modifies, or disrupts a message * Adjacent-channel interference, caused by extra ...
effects that filter out any wavelengths except at the requisite band. Taken in isolation, H-alpha dichroic filters are useful in
astrophotography Astrophotography, also known as astronomical imaging, is the photography or imaging of astronomical objects, celestial events, or areas of the night sky. The first photograph of an astronomical object (the Moon) was taken in 1839, but it was no ...
and for reducing the effects of
light pollution Light pollution is the presence of any unwanted, inappropriate, or excessive artificial Visible spectrum, lighting. In a descriptive sense, the term ''light pollution'' refers to the effects of any poorly implemented lighting sources, during the ...
. They do not have narrow enough bandwidth for observing the Sun's atmosphere. For observing the Sun, a much narrower band filter can be made from three parts: an "energy rejection filter" which is usually a piece of red glass that absorbs most of the unwanted wavelengths, a Fabry–Pérot etalon which transmits several wavelengths including one centred on the H-alpha emission line, and a "blocking filter" -a dichroic filter which transmits the H-alpha line while stopping those other wavelengths that passed through the etalon. This combination will pass only a narrow (<0.1  nm) range of wavelengths of light centred on the H-alpha emission line. The physics of the etalon and the dichroic interference filters are essentially the same (relying on constructive/destructive interference of light reflecting between surfaces), but the implementation is different (a dichroic interference filter relies on the interference of internal reflections while the etalon has a relatively large air gap). Due to the high velocities sometimes associated with features visible in H-alpha light (such as fast moving prominences and ejections), solar H-alpha etalons can often be tuned (by tilting or changing the temperature or air density) to cope with the associated
Doppler effect The Doppler effect (also Doppler shift) is the change in the frequency of a wave in relation to an observer who is moving relative to the source of the wave. The ''Doppler effect'' is named after the physicist Christian Doppler, who described ...
. Commercially available H-alpha filters for amateur solar observing usually state bandwidths in Angstrom units and are typically 0.7Å (0.07 nm). By using a second etalon, this can be reduced to 0.5Å leading to improved contrast in details observed on the Sun's disc. An even more narrow band filter can be made using a
Lyot filter A Lyot filter (polarization-interference monochromator, birefringent filter), named for its inventor and French astronomer Bernard Lyot, is a type of optical filter that uses birefringence to produce a narrow passband of transmitted wavelengths. L ...
.


See also

*
Hydrogen spectral series The emission spectrum of atomic hydrogen has been divided into a number of ''spectral series'', with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels i ...
*
Rydberg formula In atomic physics, the Rydberg formula calculates the wavelengths of a spectral line in many chemical elements. The formula was primarily presented as a generalization of the Balmer series for all atomic electron transitions of hydrogen. It was ...
*
Spectrohelioscope A spectrohelioscope is a type of solar telescope designed by George Ellery Hale in 1924 to allow the Sun to be viewed in a selected wavelength of light. The name comes from Latin- and Greek-based words: "Spectro," referring to the optical spectrum, ...


References


External links


Description of etalon filter by Colin Kaminski
{{Webarchive, url=https://web.archive.org/web/20210224223130/http://www.designerinlight.com/solar/EtalonArticlePt1.pdf , date=2021-02-24

Atomic physics Astronomical spectroscopy Hydrogen physics Optical filters