HAT1
   HOME

TheInfoList



OR:

Histone acetyltransferase 1, also known as HAT1, is an
enzyme An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
that, in humans, is encoded by the ''HAT1''
gene In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protei ...
.


Function

The protein encoded by this gene is a type B
histone acetyltransferase Histone acetyltransferases (HATs) are enzymes that acetylation, acetylate conserved lysine amino acids on histone proteins by transferring an acetyl group from acetyl-CoA to form ε-N-acetyllysine, ε-''N''-acetyllysine. DNA is wrapped around his ...
(HAT) that is involved in the rapid
acetylation : In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed ''acetate esters'' or simply ''acetates''. Deacetylation is the opposite react ...
of newly synthesized cytoplasmic
histone In biology, histones are highly basic proteins abundant in lysine and arginine residues that are found in eukaryotic cell nuclei and in most Archaeal phyla. They act as spools around which DNA winds to create structural units called nucleosomes ...
s, which are, in turn, imported into the nucleus for de novo deposition onto nascent DNA chains. Histone acetylation, in particular, of
histone H4 Histone H4 is one of the five main histone proteins involved in the structure of chromatin in eukaryote, eukaryotic cells. Featuring a main globular domain and a long N-terminus, N-terminal tail, H4 is involved with the structure of the nucleo ...
, plays an important role in replication-dependent chromatin assembly. To be specific, this HAT can acetylate soluble but not nucleosomal histone H4 at lysines 5 and 12, and, to a lesser degree, histone H2A at lysine 5.


References


Further reading

* * * * * * * * * * * * * {{NLM content