In 4-dimensional
geometry
Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, there are 15
uniform polytopes with H
4 symmetry. Two of these, the
120-cell
In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is also called a C120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hec ...
and
600-cell
In geometry, the 600-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol .
It is also known as the C600, hexacosichoron and hexacosihedroid.
It is also called a tetraplex (abbreviated from ...
, are
regular
Regular may refer to:
Arts, entertainment, and media Music
* "Regular" (Badfinger song)
* Regular tunings of stringed instruments, tunings with equal intervals between the paired notes of successive open strings
Other uses
* Regular character, ...
.
Visualizations
Each can be visualized as symmetric
orthographic projection
Orthographic projection (also orthogonal projection and analemma) is a means of representing Three-dimensional space, three-dimensional objects in Plane (mathematics), two dimensions. Orthographic projection is a form of parallel projection in ...
s in
Coxeter plane
In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which hav ...
s of the H
4 Coxeter group, and other subgroups.
The 3D picture are drawn as
Schlegel diagram
In geometry, a Schlegel diagram is a projection of a polytope from \mathbb^d into \mathbb^ through a point just outside one of its facets. The resulting entity is a polytopal subdivision of the facet in \mathbb^ that, together with the ori ...
projections, centered on the cell at pos. 3, with a consistent orientation, and the 5 cells at position 0 are shown solid.
Coordinates
The coordinates of uniform polytopes from the H
4 family are complicated. The regular ones can be expressed in terms of the
golden ratio
In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if
\fr ...
and . Coxeter expressed them as 5-dimensional coordinates.
[Coxeter, ''Regular and Semi-Regular Polytopes II'', ''Four-dimensional polytopes', p. 296–298]
References
*
J.H. Conway
John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician. He was active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many br ...
and
M.J.T. Guy: ''Four-Dimensional Archimedean Polytopes'', Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
*
John H. Conway, Heidi Burgiel,
Chaim Goodman-Strauss
Chaim Goodman-Strauss (born June 22, 1967 in Austin, Texas) is an American mathematician who works in convex geometry, especially aperiodic tiling. He retired from the faculty of the University of Arkansas and currently serves as outreach mathem ...
, ''The Symmetries of Things'' 2008, (Chapter 26)
*
H.S.M. Coxeter
Harold Scott MacDonald "Donald" Coxeter (9 February 1907 – 31 March 2003) was a British-Canadian geometer and mathematician. He is regarded as one of the greatest geometers of the 20th century.
Coxeter was born in England and educated ...
:
** H.S.M. Coxeter, ''Regular Polytopes'', 3rd Edition, Dover New York, 1973
* Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
Wiley::Kaleidoscopes: Selected Writings of H.S.M. Coxeter** (Paper 22) H.S.M. Coxeter, ''Regular and Semi Regular Polytopes I'',
ath. Zeit. 46 (1940) 380-407, MR 2,10** (Paper 23) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes II'',
ath. Zeit. 188 (1985) 559-591** (Paper 24) H.S.M. Coxeter, ''Regular and Semi-Regular Polytopes III'',
ath. Zeit. 200 (1988) 3-45*
N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
*
*
Notes
External links
*
Uniform, convex polytopes in four dimensions: Marco Möller
**
*
**
* H4 uniform polytopes with coordinates
rr
t
t
rr
rr
tr
tr
2t
t03
t013
t013
t0123
grand antiprism
{{Polytopes
Uniform 4-polytopes