Gyárfás–Sumner Conjecture
   HOME

TheInfoList



OR:

In
graph theory In mathematics and computer science, graph theory is the study of ''graph (discrete mathematics), graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of ''Vertex (graph ...
, the Gyárfás–Sumner conjecture asks whether, for every
tree In botany, a tree is a perennial plant with an elongated stem, or trunk, usually supporting branches and leaves. In some usages, the definition of a tree may be narrower, e.g., including only woody plants with secondary growth, only ...
T and
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices i ...
K, the graphs with neither T nor K as
induced subgraph In graph theory, an induced subgraph of a graph is another graph, formed from a subset of the vertices of the graph and ''all'' of the edges, from the original graph, connecting pairs of vertices in that subset. Definition Formally, let G=(V,E) ...
s can be properly colored using only a constant number of colors. Equivalently, it asks whether the T-free graphs are \chi-bounded. It is named after András Gyárfás and David Sumner, who formulated it independently in 1975 and 1981 respectively. It remains unproven. In this conjecture, it is not possible to replace T by a graph with cycles. As
Paul Erdős Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, g ...
and András Hajnal have shown, there exist graphs with arbitrarily large chromatic number and, at the same time, arbitrarily large girth. Using these graphs, one can obtain graphs that avoid any fixed choice of a cyclic graph and clique (of more than two vertices) as induced subgraphs, and exceed any fixed bound on the chromatic number. The conjecture is known to be true for certain special choices of T, including paths,
stars A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of ...
, and trees of radius two. It is also known that, for any tree T, the graphs that do not contain any subdivision of T are \chi-bounded.


References


External links


Graphs with a forbidden induced tree are chi-bounded
Open Problem Garden {{DEFAULTSORT:Gyarfas-Sumner conjecture Graph coloring Conjectures Unsolved problems in graph theory