HOME

TheInfoList



OR:

In
probability theory Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expre ...
, especially as it is used in
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, a group family of
probability distribution In probability theory and statistics, a probability distribution is a Function (mathematics), function that gives the probabilities of occurrence of possible events for an Experiment (probability theory), experiment. It is a mathematical descri ...
s is one obtained by subjecting a random variable with a fixed distribution to a suitable transformation, such as a location–scale family, or otherwise one of probability distributions acted upon by a group. Considering a family of distributions as a group family can, in
statistical theory The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. The theory covers approaches to statistical-decision problems and to statistica ...
, lead to identifying ancillary statistics.Cox, D.R. (2006) ''Principles of Statistical Inference'', CUP. (Section 4.4.2)


Types

A group family can be generated by subjecting a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
with a fixed distribution to some suitable transformations. Different types of group families are as follows :


Location

This family is obtained by adding a constant to a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
. Let X be a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
and a \in R be a constant. Let Y = X + a . Then F_Y(y) = P(Y\leq y) = P(X+a \leq y) = P(X \leq y-a) = F_X(y-a) For a fixed distribution, as a varies from -\infty to \infty , the distributions that we obtain constitute the location family.


Scale

This family is obtained by multiplying a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
with a constant. Let X be a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
and c \in R^+ be a constant. Let Y = cX . ThenF_Y(y) = P(Y\leq y) = P(cX \leq y) = P(X \leq y/c) = F_X(y/c)


Location–scale

This family is obtained by multiplying a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
with a constant and then adding some other constant to it. Let X be a
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathema ...
, a \in R and c \in R^+be constants. Let Y = cX + a . Then F_Y(y) = P(Y\leq y) = P(cX+a \leq y) = P(X \leq (y-a)/c) = F_X((y-a)/c) Note that it is important that a \in R and c \in R^+ in order to satisfy the properties mentioned in the following section.


Transformation

The transformation applied to the random variable must satisfy the properties of closure under composition and inversion.


References

Parametric statistics Types of probability distributions {{Statistics-stub