
In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the great ditrigonal icosidodecahedron (or great ditrigonary icosidodecahedron) is a
nonconvex uniform polyhedron, indexed as U
47. It has 32 faces (20
triangle
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, an ...
s and 12
pentagon
In geometry, a pentagon (from the Greek πέντε ''pente'' meaning ''five'' and γωνία ''gonia'' meaning ''angle'') is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°.
A pentagon may be simpl ...
s), 60 edges, and 20 vertices.
It has 4
Schwarz triangle
In geometry, a Schwarz triangle, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere (spherical tiling), possibly overlapping, through reflections in its edges. They were classified in .
These can be defined mor ...
equivalent constructions, for example
Wythoff symbol
In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform pol ...
3 , 3 gives
Coxeter diagram = . It has extended
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
a or c, as an ''altered great stellated dodecahedron'' or ''converted great icosahedron''.
Its
circumradius
In geometry, the circumscribed circle or circumcircle of a polygon is a circle that passes through all the vertices of the polygon. The center of this circle is called the circumcenter and its radius is called the circumradius.
Not every polyg ...
is
times the length of its edge,
a value it shares with the
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
.
Related polyhedra
Its
convex hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
is a regular
dodecahedron. It additionally shares its
edge arrangement with the
small ditrigonal icosidodecahedron
In geometry, the small ditrigonal icosidodecahedron (or small ditrigonary icosidodecahedron) is a nonconvex uniform polyhedron, indexed as U30. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 20 vertices. It has extended Schläfl ...
(having the triangular faces in common), the
ditrigonal dodecadodecahedron
In geometry, the ditrigonal dodecadodecahedron (or ditrigonary dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U41. It has 24 faces (12 pentagons and 12 pentagrams), 60 edges, and 20 vertices. It has extended Schläfli symbol ...
(having the pentagonal faces in common), and the regular
compound of five cubes
The compound of five cubes is one of the five regular polyhedral compounds. It was first described by Edmund Hess in 1876.
It is one of five regular compounds, and dual to the compound of five octahedra. It can be seen as a faceting of a regula ...
.
References
External links
*
VRML model
MathWorld
Uniform polyhedra
{{Polyhedron-stub