Great-circle Arc
   HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a great circle or orthodrome is the circular
intersection In mathematics, the intersection of two or more objects is another object consisting of everything that is contained in all of the objects simultaneously. For example, in Euclidean geometry, when two lines in a plane are not parallel, their ...
of a
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
and a plane passing through the sphere's center point.


Discussion

Any arc of a great circle is a
geodesic In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
of the sphere, so that great circles in
spherical geometry 300px, A sphere with a spherical triangle on it. Spherical geometry or spherics () is the geometry of the two-dimensional surface of a sphere or the -dimensional surface of higher dimensional spheres. Long studied for its practical applicati ...
are the natural analog of straight lines in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. For any pair of distinct non-
antipodal Antipode or Antipodes may refer to: Mathematics * Antipodal point, the diametrically opposite point on a circle or ''n''-sphere, also known as an antipode * Antipode, the convolution inverse of the identity on a Hopf algebra Geography * Antipodes ...
points on the sphere, there is a unique great circle passing through both. (Every great circle through any point also passes through its antipodal point, so there are infinitely many great circles through two antipodal points.) The shorter of the two great-circle arcs between two distinct points on the sphere is called the ''minor arc'', and is the shortest surface-path between them. Its
arc length Arc length is the distance between two points along a section of a curve. Development of a formulation of arc length suitable for applications to mathematics and the sciences is a problem in vector calculus and in differential geometry. In the ...
is the
great-circle distance The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path between the two points on the surface of the ...
between the points (the intrinsic distance on a sphere), and is proportional to the measure of the
central angle A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc l ...
formed by the two points and the center of the sphere. A great circle is the largest circle that can be drawn on any given sphere. Any
diameter In geometry, a diameter of a circle is any straight line segment that passes through the centre of the circle and whose endpoints lie on the circle. It can also be defined as the longest Chord (geometry), chord of the circle. Both definitions a ...
of any great circle coincides with a diameter of the sphere, and therefore every great circle is
concentric In geometry, two or more objects are said to be ''concentric'' when they share the same center. Any pair of (possibly unalike) objects with well-defined centers can be concentric, including circles, spheres, regular polygons, regular polyh ...
with the sphere and shares the same
radius In classical geometry, a radius (: radii or radiuses) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The radius of a regular polygon is th ...
. Any other circle of the sphere is called a
small circle In spherical geometry, a spherical circle (often shortened to circle) is the locus of points on a sphere at constant spherical distance (the ''spherical radius'') from a given point on the sphere (the ''pole'' or ''spherical center''). It is ...
, and is the intersection of the sphere with a plane not passing through its center. Small circles are the spherical-geometry analog of circles in Euclidean space. Every circle in Euclidean 3-space is a great circle of exactly one sphere. The disk bounded by a great circle is called a ''great disk'': it is the intersection of a
ball A ball is a round object (usually spherical, but sometimes ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used for s ...
and a plane passing through its center. In higher dimensions, the great circles on the ''n''-sphere are the intersection of the ''n''-sphere with 2-planes that pass through the origin in the
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
. Half of a great circle may be called a ''great
semicircle In mathematics (and more specifically geometry), a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180° (equivalently, radians, or a half-turn). It only has one line of symmetr ...
'' (e.g., as in parts of a meridian in astronomy).


Derivation of shortest paths

To prove that the minor arc of a great circle is the shortest path connecting two points on the surface of a sphere, one can apply
calculus of variations The calculus of variations (or variational calculus) is a field of mathematical analysis that uses variations, which are small changes in Function (mathematics), functions and functional (mathematics), functionals, to find maxima and minima of f ...
to it. Consider the class of all regular paths from a point p to another point q. Introduce
spherical coordinates In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are * the radial distance along the line connecting the point to a fixed point ...
so that p coincides with the north pole. Any curve on the sphere that does not intersect either pole, except possibly at the endpoints, can be parametrized by :\theta = \theta(t),\quad \phi = \phi(t),\quad a\le t\le b provided \phi is allowed to take on arbitrary real values. The infinitesimal arc length in these coordinates is : ds=r\sqrt\, dt. So the length of a curve \gamma from p to q is a functional of the curve given by : S
gamma Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
r\int_a^b\sqrt\, dt. According to the
Euler–Lagrange equation In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered ...
, S
gamma Gamma (; uppercase , lowercase ; ) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop . In Modern Greek, this letter normally repr ...
/math> is minimized if and only if : \frac=C, where C is a t-independent constant, and : \frac=\frac\frac. From the first equation of these two, it can be obtained that : \phi'=\frac. Integrating both sides and considering the boundary condition, the real solution of C is zero. Thus, \phi'=0 and \theta can be any value between 0 and \theta_0, indicating that the curve must lie on a meridian of the sphere. In a
Cartesian coordinate system In geometry, a Cartesian coordinate system (, ) in a plane (geometry), plane is a coordinate system that specifies each point (geometry), point uniquely by a pair of real numbers called ''coordinates'', which are the positive and negative number ...
, this is :x\sin\phi_0 - y\cos\phi_0 = 0 which is a plane through the origin, i.e., the center of the sphere.


Applications

Some examples of great circles on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, ...
include the celestial horizon, the
celestial equator The celestial equator is the great circle of the imaginary celestial sphere on the same plane as the equator of Earth. By extension, it is also a plane of reference in the equatorial coordinate system. Due to Earth's axial tilt, the celestial ...
, and the
ecliptic The ecliptic or ecliptic plane is the orbital plane of Earth's orbit, Earth around the Sun. It was a central concept in a number of ancient sciences, providing the framework for key measurements in astronomy, astrology and calendar-making. Fr ...
. Great circles are also used as rather accurate approximations of
geodesics In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connec ...
on the
Earth Earth is the third planet from the Sun and the only astronomical object known to Planetary habitability, harbor life. This is enabled by Earth being an ocean world, the only one in the Solar System sustaining liquid surface water. Almost all ...
's surface for air or sea
navigation Navigation is a field of study that focuses on the process of monitoring and controlling the motion, movement of a craft or vehicle from one place to another.Bowditch, 2003:799. The field of navigation includes four general categories: land navig ...
(although it is not a perfect sphere), as well as on spheroidal
celestial bodies An astronomical object, celestial object, stellar object or heavenly body is a naturally occurring physical entity, association, or structure that exists within the observable universe. In astronomy, the terms ''object'' and ''body'' are of ...
. The
equator The equator is the circle of latitude that divides Earth into the Northern Hemisphere, Northern and Southern Hemisphere, Southern Hemispheres of Earth, hemispheres. It is an imaginary line located at 0 degrees latitude, about in circumferen ...
of the idealized earth is a great circle and any meridian and its opposite meridian form a great circle. Another great circle is the one that divides the
land and water hemispheres The land hemisphere and water hemisphere are the hemispheres of Earth containing the largest possible total areas of land and ocean, respectively. By definition (assuming that the entire surface can be classified as either "land" or "ocean"), t ...
. A great circle divides the earth into two
hemispheres Hemisphere may refer to: In geometry * Hemisphere (geometry), a half of a sphere As half of Earth or any spherical astronomical object * A hemispheres of Earth, hemisphere of Earth ** Northern Hemisphere ** Southern Hemisphere ** Eastern Hemisphe ...
and if a great circle passes through a point it must pass through its
antipodal point In mathematics, two points of a sphere (or n-sphere, including a circle) are called antipodal or diametrically opposite if they are the endpoints of a diameter, a straight line segment between two points on a sphere and passing through its cen ...
. The
Funk transform In the mathematical field of integral geometry, the Funk transform (also known as Minkowski–Funk transform, Funk–Radon transform or spherical Radon transform) is an integral transform defined by integrating a function on great circles of the ...
integrates a function along all great circles of the sphere.


See also

*
Great ellipse 150px, A spheroid A great ellipse is an ellipse passing through two points on a spheroid and having the same center as that of the spheroid. Equivalently, it is an ellipse on the surface of a spheroid and centered on the origin, or the curve ...
*
Rhumb line In navigation, a rhumb line, rhumb (), or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant azimuth ( bearing as measured relative to true north). Navigation on a fixed course (i.e., s ...


References

{{Reflist


External links


Great Circle – from MathWorld
Great Circle description, figures, and equations. Mathworld, Wolfram Research, Inc. c1999
Great Circles on Mercator's Chart
by John Snyder with additional contributions by Jeff Bryant, Pratik Desai, and Carl Woll,
Wolfram Demonstrations Project The Wolfram Demonstrations Project is an Open source, open-source collection of Interactive computing, interactive programmes called Demonstrations. It is hosted by Wolfram Research. At its launch, it contained 1300 demonstrations but has grown t ...
. Elementary geometry Spherical trigonometry Riemannian geometry Circles Spherical curves