Gray Iron
   HOME

TheInfoList



OR:

Gray iron, or grey cast iron, is a type of
cast iron Cast iron is a class of iron–carbon alloys with a carbon content of more than 2% and silicon content around 1–3%. Its usefulness derives from its relatively low melting temperature. The alloying elements determine the form in which its car ...
that has a graphitic microstructure. It is named after the gray color of the fracture it forms, which is due to the presence of graphite.. It is the most common cast iron and the most widely used cast material based on weight.. It is used for housings where the stiffness of the component is more important than its tensile strength, such as
internal combustion engine An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
cylinder blocks, pump housings, valve bodies, electrical boxes, and decorative castings. Grey cast iron's high
thermal conductivity The thermal conductivity of a material is a measure of its ability to heat conduction, conduct heat. It is commonly denoted by k, \lambda, or \kappa and is measured in W·m−1·K−1. Heat transfer occurs at a lower rate in materials of low ...
and specific heat capacity are often exploited to make cast iron cookware and disc brake rotors. on brakes in freight trains has been greatly reduced in the
European Union The European Union (EU) is a supranational union, supranational political union, political and economic union of Member state of the European Union, member states that are Geography of the European Union, located primarily in Europe. The u ...
over concerns regarding
noise pollution Noise pollution, or sound pollution, is the propagation of noise or sound with potential harmful effects on humans and animals. The source of outdoor noise worldwide is mainly caused by machines, transport and propagation systems.Senate Publi ...
. Deutsche Bahn for example had replaced grey iron brakes on 53,000 of its freight cars (85% of their fleet) with newer, quieter models by 2019—in part to comply with a law that came into force in December 2020.


Structure

A typical chemical composition to obtain a graphitic microstructure is 2.5 to 4.0%
carbon Carbon () is a chemical element; it has chemical symbol, symbol C and atomic number 6. It is nonmetallic and tetravalence, tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 ...
and 1 to 3% silicon by weight. Graphite may occupy 6 to 10% of the volume of grey iron. Silicon is important for making grey iron as opposed to white cast iron, because silicon is a ''graphite stabilizing'' element in cast iron, which means it helps the alloy produce graphite instead of iron carbides; at 3% silicon almost no carbon is held in chemical form as iron carbide. Another factor affecting graphitization is the solidification rate; the slower the rate, the greater the time for the carbon to diffuse and accumulate into graphite. A moderate cooling rate forms a more pearlitic matrix, while a fast cooling rate forms a more ferritic matrix. To achieve a fully ferritic matrix the alloy must be annealed. Rapid cooling partly or completely suppresses graphitization and leads to the formation of cementite, which is called white iron.. The graphite takes on the shape of a three-dimensional flake. In two dimensions, as a polished surface, the graphite flakes appear as fine lines. The graphite has no appreciable strength, so they can be treated as voids. The tips of the flakes act as preexisting notches at which stresses concentrate and it therefore behaves in a brittle manner.. The presence of graphite flakes makes the grey iron easily machinable as they tend to crack easily across the graphite flakes. Grey iron also has very good damping capacity and hence it is often used as the base for machine tool mountings.


Classifications

In the United States, the most commonly used classification for gray iron is ASTM International standard A48. This orders gray iron into ''classes'' which correspond with its minimum tensile strength in thousands of pounds per square inch (ksi); e.g. class 20 gray iron has a minimum tensile strength of . Class 20 has a high carbon equivalent and a ferrite matrix. Higher strength gray irons, up to class 40, have lower carbon equivalents and a pearlite matrix. Gray iron above class 40 requires alloying to provide solid solution strengthening, and heat treating is used to modify the matrix. Class 80 is the highest class available, but it is extremely brittle. ASTM A247 is also commonly used to describe the graphite structure. Other ASTM standards that deal with gray iron include ASTM A126, ASTM A278, and ASTM A319. In the automotive industry, the SAE International (SAE) standard SAE J431 is used to designate ''grades'' instead of classes. These grades are a measure of the tensile strength-to- Brinell hardness ratio. The variation of the tensile modulus of elasticity of the various grades is a reflection of the percentage of graphite in the material as such material has neither strength nor stiffness and the space occupied by graphite acts like a void, thereby creating a spongy material.


Advantages and disadvantages

Gray iron is a common engineering alloy because of its relatively low cost and good machinability, which results from the graphite lubricating the cut and breaking up the chips. It also has good galling and wear resistance because the graphite flakes self-lubricate. The graphite also gives gray iron an excellent damping capacity because it absorbs the energy and converts it into heat. Grey iron cannot be worked (forged, extruded, rolled etc.) even at temperature. Gray iron also experiences less solidification shrinkage than other cast irons that do not form a graphite microstructure. The silicon promotes good corrosion resistance and increased fluidity when casting. Gray iron is generally considered easy to weld. Compared to the more modern iron alloys, gray iron has a low tensile strength and ductility; therefore, its impact and shock resistance is almost non-existent.


See also

* Meehanite


Notes


References

* * *


Further reading

* {{DEFAULTSORT:Gray Iron Cast iron Ferrous alloys Iron fr:Fonte (métallurgie)#Fonte grise