HOME

TheInfoList



OR:

In mathematics, the graph structure theorem is a major result in the area of
graph theory In mathematics, graph theory is the study of '' graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conn ...
. The result establishes a deep and fundamental connection between the theory of graph minors and topological embeddings. The theorem is stated in the seventeenth of a series of 23 papers by
Neil Robertson Neil Robertson (born 11 February 1982) is an Australian professional snooker player who is a former world champion and former world number one. The only Australian to have won a ranking event, he is also the only player from outside the United ...
and Paul Seymour. Its proof is very long and involved. and are surveys accessible to nonspecialists, describing the theorem and its consequences.


Setup and motivation for the theorem

A minor of a graph is any graph that is isomorphic to a graph that can be obtained from a subgraph of by
contracting A contract is a legally enforceable agreement between two or more parties that creates, defines, and governs mutual rights and obligations between them. A contract typically involves the transfer of goods, services, money, or a promise to tr ...
some edges. If does ''not'' have a graph as a minor, then we say that is -free. Let be a fixed graph. Intuitively, if is a huge -free graph, then there ought to be a "good reason" for this. The graph structure theorem provides such a "good reason" in the form of a rough description of the structure of . In essence, every -free graph suffers from one of two structural deficiencies: either is "too thin" to have as a minor, or can be (almost) topologically embedded on a surface that is too simple to embed upon. The first reason applies if is a
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cro ...
, and both reasons apply if is not planar. We first make precise these notions.


Tree width

The tree width of a graph is a positive integer that specifies the "thinness" of . For example, a connected graph has tree width one if and only if it is a tree, and has tree width two if and only if it is a
series–parallel graph In graph theory, series–parallel graphs are graphs with two distinguished vertices called ''terminals'', formed recursively by two simple composition operations. They can be used to model series and parallel electric circuits. Definition and t ...
. Intuitively, a huge graph has small tree width if and only if takes the structure of a huge tree whose nodes and edges have been replaced by small graphs. We give a precise definition of tree width in the subsection regarding clique-sums. It is a theorem that if is a minor of , then the tree width of is not greater than that of . Therefore, one "good reason" for to be -free is that the tree width of is not very large. The graph structure theorem implies that this reason always applies in case is planar. ''Corollary 1.'' For every planar graph , there exists a positive integer such that every -free graph has tree width less than . It is unfortunate that the value of in Corollary 1 is generally much larger than the tree width of (a notable exception is when , the complete graph on four vertices, for which ). This is one reason that the graph structure theorem is said to describe the "rough structure" of -free graphs.


Surface embeddings

Roughly, a
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is t ...
is a set of points with a local topological structure of a disc. Surfaces fall into two infinite families: the ''orientable'' surfaces include the
sphere A sphere () is a Geometry, geometrical object that is a solid geometry, three-dimensional analogue to a two-dimensional circle. A sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
, the
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not ...
, the double torus and so on; the ''nonorientable'' surfaces include the
real projective plane In mathematics, the real projective plane is an example of a compact non- orientable two-dimensional manifold; in other words, a one-sided surface. It cannot be embedded in standard three-dimensional space without intersecting itself. It has ...
, the
Klein bottle In topology, a branch of mathematics, the Klein bottle () is an example of a non-orientable surface; it is a two-dimensional manifold against which a system for determining a normal vector cannot be consistently defined. Informally, it is a ...
and so on. A graph embeds on a surface if the graph can be drawn on the surface as a set of points (vertices) and arcs (edges) that do not cross or touch each other, except where edges and vertices are incident or adjacent. A graph is planar if it embeds on the sphere. If a graph embeds on a particular surface then every minor of also embeds on that same surface. Therefore, a "good reason" for to be -free is that embeds on a surface that does not embed on. When is not planar, the graph structure theorem may be looked at as a vast generalization of the Kuratowski theorem. A version of this theorem proved by states that if a graph is both -free and -free, then is planar. This theorem provides a "good reason" for a graph not to have or as minors; specifically, embeds on the sphere, whereas neither nor embed on the sphere. Unfortunately, this notion of "good reason" is not sophisticated enough for the graph structure theorem. Two more notions are required: ''clique-sums'' and ''vortices''.


Clique-sum In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs ''G'' and ''H'' each contain cliques of equal size, th ...
s

A
clique A clique ( AusE, CanE, or ), in the social sciences, is a group of individuals who interact with one another and share similar interests. Interacting with cliques is part of normative social development regardless of gender, ethnicity, or popula ...
in a graph is any set of vertices that are pairwise adjacent in . For a non-negative integer , a -clique-sum of two graphs and is any graph obtained by selecting a non-negative integer , selecting clique of size in each of and , identifying the two cliques into a single clique of size , then deleting zero or more of the edges that join vertices in the new clique. If is a list of graphs, then we may produce a new graph by joining the list of graphs ''via -clique-sums''. That is, we take a -clique-sum of and , then take a -clique-sum of with the resulting graph, and so on. A graph has tree width at most if it can be obtained via -clique-sums from a list of graphs, where each graph in the list has at most vertices. Corollary 1 indicates to us that -clique-sums of small graphs describe the rough structure -free graphs when is planar. When is nonplanar, we also need to consider -clique-sums of a list of graphs, each of which is embedded on a surface. The following example with illustrates this point. The graph embeds on every surface except for the sphere. However there exist -free graphs that are far from planar. In particular, the 3-clique-sum of any list of planar graphs results in a -free graph. determined the precise structure of -free graphs, as part of a cluster of results known as
Wagner's theorem In graph theory, Wagner's theorem is a mathematical forbidden graph characterization of planar graphs, named after Klaus Wagner, stating that a finite graph is planar if and only if its minors include neither ''K''5 (the complete graph on f ...
: ''Theorem 2.'' If is -free, then can be obtained via 3-clique-sums from a list of planar graphs, and copies of one special non-planar graph having 8-vertices. We point out that Theorem 2 is an ''exact structure theorem'' since the precise structure of -free graphs is determined. Such results are rare within graph theory. The graph structure theorem is not precise in this sense because, for most graphs , the structural description of -free graphs includes some graphs that are ''not'' -free.


Vortices (rough description)

One might be tempted to conjecture that an analog of Theorem 2 holds for graphs other than . Perhaps it is true that: ''for any non-planar graph , there exists a positive integer such that every -free graph can be obtained via -clique-sums from a list of graphs, each of which either has at most vertices or embeds on some surface that does not embed on''. Unfortunately, this statement is not yet sophisticated enough to be true. We must allow each embedded graph to "cheat" in two limited ways. First, we must allow a bounded number of locations on the surface at which we may add some new vertices and edges that are permitted to cross each other in a manner of limited ''complexity''. Such locations are called vortices. The "complexity" of a vortex is limited by a parameter called its depth, closely related to
pathwidth In graph theory, a path decomposition of a graph is, informally, a representation of as a "thickened" path graph, and the pathwidth of is a number that measures how much the path was thickened to form . More formally, a path-decomposition ...
. The reader may prefer to defer reading the following precise description of a vortex of depth . Second, we must allow a limited number of new vertices to add to each of the embedded graphs with vortices.


Vortices (precise definition)

A face of an embedded graph is an open 2-cell in the surface that is disjoint from the graph, but whose boundary is the union of some of the edges of the embedded graph. Let be a face of an embedded graph and let , be the vertices lying on the boundary of (in that circular order). A circular interval for is a set of vertices of the form where and are integers and where subscripts are reduced modulo . Let be a finite list of circular intervals for . We construct a new graph as follows. For each circular interval in we add a new vertex that joins to zero or more of the vertices in . Finally, for each pair of intervals in , we may add an edge joining to provided that and have nonempty intersection. The resulting graph is said to be obtained from by adding a vortex of depth at most (to the face ) provided that no vertex on the boundary of appears in more than of the intervals in .


Statement of the graph structure theorem

Graph structure theorem. ''For any graph , there exists a positive integer such that every -free graph can be obtained as follows:'' # ''We start with a list of graphs, where each graph in the list is embedded on a surface on which does not embed'' # ''to each embedded graph in the list, we add at most vortices, where each vortex has depth at most # ''to each resulting graph we add at most new vertices (called apexes) and add any number of edges, each having at least one of its endpoints among the apexes.'' # ''finally, we join via -clique-sums the resulting list of graphs.'' Note that steps 1. and 2. result in an empty graph if is planar, but the bounded number of vertices added in step 3. makes the statement consistent with Corollary 1.


Refinements

Strengthened versions of the graph structure theorem are possible depending on the set of forbidden minors. For instance, when one of the graphs in is planar, then every -minor-free graph has a
tree decomposition In graph theory, a tree decomposition is a mapping of a graph into a tree that can be used to define the treewidth of the graph and speed up solving certain computational problems on the graph. Tree decompositions are also called junction trees ...
of bounded width; equivalently, it can be represented as a
clique-sum In graph theory, a branch of mathematics, a clique-sum is a way of combining two graphs by gluing them together at a clique, analogous to the connected sum operation in topology. If two graphs ''G'' and ''H'' each contain cliques of equal size, th ...
of graphs of constant size. When one of the graphs in can be drawn in the plane with only a single crossing, then the -minor-free graphs admit a decomposition as a clique-sum of graphs of constant size and graphs of bounded genus, without vortices. A different strengthening is also known when one of the graphs in is an
apex graph In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is ''an'' apex, not ''the'' apex because an apex graph may have m ...
..


See also

*
Robertson–Seymour theorem In graph theory, the Robertson–Seymour theorem (also called the graph minor theorem) states that the undirected graphs, partially ordered by the graph minor relationship, form a well-quasi-ordering. Equivalently, every family of graphs that i ...


Notes


References

*. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. *. * *. *. *. *. *. *. *. *. *{{citation , last = Wagner , first = Klaus , author-link = Klaus Wagner (mathematician) , journal = Deutsche Mathematik , pages = 280–285 , title = Über eine Erweiterung des Satzes von Kuratowski , volume = 2 , year = 1937. Graph minor theory Theorems in graph theory