The governing equations of a
mathematical model
A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
describe how the values of the unknown variables (i.e. the
dependent variable
A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical functio ...
s) change when one or more of the known (i.e.
independent) variables change.
Physical systems can be modeled
phenomenologically at various levels of sophistication, with each level capturing a different degree of detail about the system. A governing equation represents the most detailed and fundamental phenomenological model currently available for a given system.
For example, at the coarsest level, a
beam is just a 1D curve whose torque is a function of local curvature. At a
more refined level, the beam is a 2D body whose stress-tensor is a function of local strain-tensor, and strain-tensor is a function of its deformation. The equations are then a
PDE system. Note that both levels of sophistication are phenomenological, but one is deeper than the other. As another example, in fluid dynamics, the
Navier-Stokes equations are more refined than
Euler equations
In mathematics and physics, many topics are eponym, named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler include their own unique function, e ...
.
As the field progresses and our understanding of the underlying mechanisms deepens, governing equations may be replaced or refined by new, more accurate models that better represent the system's behavior. These new governing equations can then be considered the deepest level of phenomenological model at that point in time.
Mass balance
A
mass balance, also called a material balance, is an application of
conservation of mass
In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter the mass of the system must remain constant over time.
The law implies that mass can neith ...
to the analysis of physical systems. It is the simplest governing equation, and it is simply a budget (balance calculation) over the quantity in question:
Differential equation
Physics
The governing equations
in classical physics that are
lectured
/ref>
/ref>
/ref>
/ref>
at universities are listed below.
* balance of mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
* balance of (linear) momentum
* balance of angular momentum
Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of Momentum, linear momentum. It is an important physical quantity because it is a Conservation law, conserved quantity – the total ang ...
* balance of energy
Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
* balance of entropy
* Maxwell-Faraday equation for induced electric field
* Ampére-Maxwell equation for induced magnetic field
* Gauss equation for electric flux
* Gauss equation for magnetic flux
Classical continuum mechanics
The basic equations in classical continuum mechanics are all balance equations, and as such each of them contains a time-derivative term which calculates how much the dependent variable change with time. For an isolated, frictionless / inviscid system the first four equations are the familiar conservation equations in classical mechanics.
Darcy's law of groundwater flow has the form of a volumetric flux caused by a pressure gradient. A flux in classical mechanics is normally not a governing equation, but usually a defining equation for transport properties. Darcy's law was originally established as an empirical equation, but is later shown to be derivable as an approximation of Navier-Stokes equation combined with an empirical composite friction force term. This explains the duality in Darcy's law as a governing equation and a defining equation for absolute permeability.
The non-linearity of the material derivative in balance equations in general, and the complexities of Cauchy's momentum equation and Navier-Stokes equation makes the basic equations in classical mechanics exposed to establishing of simpler approximations.
Some examples of governing differential equations in classical continuum mechanics are
* Hele-Shaw flow
* Plate theory
** Kirchhoff–Love plate theory
** Mindlin–Reissner plate theory
* Vortex shedding
* Annular fin
* Astronautics
Astronautics (or cosmonautics) is the practice of sending spacecraft beyond atmosphere of Earth, Earth's atmosphere into outer space. Spaceflight is one of its main applications and space science is its overarching field.
The term ''astronautics' ...
* Finite volume method for unsteady flow
* Acoustic theory
* Precipitation hardening
* Kelvin's circulation theorem
* Kernel function for solving integral equation of surface radiation exchanges
* Nonlinear acoustics
* Large eddy simulation
Large eddy simulation (LES) is a mathematical model for turbulence used in computational fluid dynamics. It was initially proposed in 1963 by Joseph Smagorinsky to simulate atmospheric air currents, and first explored by Deardorff (1970). LES is ...
* Föppl–von Kármán equations
* Timoshenko beam theory
Biology
A famous example of governing differential equations within biology is
* Lotka-Volterra equations are prey-predator equations
Sequence of states
A governing equation may also be a state equation, an equation describing the state of the system, and thus actually be a constitutive equation that has "stepped up the ranks" because the model in question was not meant to include a time-dependent term in the equation. This is the case for a model of an oil production plant which on the average operates in a steady state mode. Results from one thermodynamic equilibrium calculation are input data to the next equilibrium calculation together with some new state parameters, and so on. In this case the algorithm and sequence of input data form a chain of actions, or calculations, that describes change of states from the first state (based solely on input data) to the last state that finally comes out of the calculation sequence.
See also
* Constitutive equation
In physics and engineering, a constitutive equation or constitutive relation is a relation between two or more physical quantities (especially kinetic quantities as related to kinematic quantities) that is specific to a material or substance o ...
* Mass balance
* Master equation
* Mathematical model
A mathematical model is an abstract and concrete, abstract description of a concrete system using mathematics, mathematical concepts and language of mathematics, language. The process of developing a mathematical model is termed ''mathematical m ...
* Primitive equations
References
{{Reflist
Equations