Applications
Gold fingerprinting characterizes a gold sample or gold-containing item by analyzing its trace elements, identifying the sample by its mineralizing event and linking it to a specific mine orMethod
Electron microprobe (EMP),Batchelor, D., Brauns, M., Gauert, C., & Simon, R. (2011). Gold Provenance of the Black Reef Conglomerate, West and East Rand, South Africa. ''SGA biennial conference'' , ''2011/1.'' Synchrotron micro-XRF (SR-M-XRF), Time-of-flight secondary ion mass spectrometry (TOF-SIMS), Laser induced breakdown spectroscopy (LIBS), Atomic emission spectrometry, x-ray fluorescence spectrometry with higher energy synchrotron radiation (SR-XFS) and Laser ablation- Inductively coupled plasma mass spectrometry (LA-ICP-MS) are all methods of gold fingerprinting. The most common method is LA-ICP-MS primarily because it is quasi-nondestructive, allowing for the preservation of the samples and convenient as samples require little to no preparation. Laser ablation allows for high spatial resolution sampling while the inductively coupled plasma mass spectrometry provides high sensitivity to identify extremely small amounts of trace elements within the gold. This method can also be conducted outside of a lab with the assistance of a portable device that uses a diode pumped solid state laser and fiber-optics, making fingerprinting more convenient as it eliminates the need for transfer of gold to a specific lab. Advantages of LA-ICP-MS include reduced sample preparation, no sample size requirements, reduced spectral interference and increased sample throughput. Over the past 32 years, LA-ICP-MS has been used for archaeological, biological and forensic purposes. For example a group of gold foil fragments dating back to the 5th Century B.C.E. were analysized by LA-ICP-MS uncovering information on their manufacturing process, function and relationship to one another.Complications
LA-ICP-MS function optimally with gold particles greater than 60 μm in diameter to avoid any contamination during measurements. Although LA-ICP-MS has a lower detection limit, its overall precision was lower than other analysis techniques for trace element concentrations such as field emission-electron probe microanalysis (FE-EPMA) and synchrotron micro X-ray fluorescence spectroscopy (SR-l-XRF). Due to the small size of gold (<5 μm-250μm) small fragments of minerals need to be separated from the gold before analysis can occur. Gold fingerprinting has limitations including elemental fractionation (the non-sample related analyte) and calibration requires matrix-matched standards. A few other problems exist that limit actual sourcing or provencancing of gold in relation to manufactured art objects. These problems include: a lack of an extensive database of elemental profiles in gold ores, the natural differences that coexist in ore geology and the difficulties of accurately analyzing trace elements. Also, trading, looting and re-melting of so called “precious” metal objects add to the problem of sourcing.See also
* Gold launderingReferences
* RJ Watling, HK Herbert, D Delev, ID Abell. "Gold fingerprinting by laser ablation inductively coupled plasma mass spectrometry". ''Spectrochimica Acta, Part B: Atomic Spectroscopy'', 1994, ''49'', 205–219. {{doi, 10.1016/0584-8547(94)80019-7. Gold