1,3-Bisphosphoglyceric acid (1,3-Bisphosphoglycerate or 1,3BPG) is a 3-carbon organic molecule present in most, if not all, living organisms.
It primarily exists as a metabolic intermediate in both
glycolysis
Glycolysis is the metabolic pathway that converts glucose () into pyruvic acid, pyruvate and, in most organisms, occurs in the liquid part of cells (the cytosol). The Thermodynamic free energy, free energy released in this process is used to form ...
during
respiration
Respiration may refer to:
Biology
* Cellular respiration, the process in which nutrients are converted into useful energy in a cell
** Anaerobic respiration, cellular respiration without oxygen
** Maintenance respiration, the amount of cellul ...
and the
Calvin cycle
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into ...
during
photosynthesis
Photosynthesis ( ) is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabo ...
. 1,3BPG is a transitional stage between
glycerate 3-phosphate
3-Phosphoglyceric acid (3PG, 3-PGA, or PGA) is the conjugate acid of 3-phosphoglycerate or glycerate 3-phosphate (GP or G3P). This glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin-Benson cycle. T ...
and
glyceraldehyde 3-phosphate
Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms.Nelson, D ...
during the fixation/reduction of
CO2. 1,3BPG is also a precursor to
2,3-bisphosphoglycerate which is formed in the
Luebering–Rapoport shunt of glycolysis in
erythrocyte
Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood ce ...
s.
Biological structure and role
1,3-Bisphosphoglycerate is the
conjugate base
A conjugate acid, within the Brønsted–Lowry acid–base theory, is a chemical compound formed when an acid gives a proton () to a base—in other words, it is a base with a hydrogen ion added to it, as it loses a hydrogen ion in the reve ...
of 1,3-bisphosphoglyceric acid. It is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to donate a
phosphate group
Phosphates are the naturally occurring form of the element phosphorus.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid. It most commonly means orthophosphate, a derivative of orthophosp ...
to
adenosine diphosphate
Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbon ...
(ADP) in order to form the energy storage molecule
adenosine triphosphate
Adenosine triphosphate (ATP) is a nucleoside triphosphate that provides energy to drive and support many processes in living cell (biology), cells, such as muscle contraction, nerve impulse propagation, and chemical synthesis. Found in all known ...
(ATP).
In glycolysis
As previously mentioned 1,3BPG is a metabolic intermediate in the
glycolytic pathway. It is created by the
exergonic
An exergonic process is one which there is a positive flow of energy from the system to the surroundings. This is in contrast with an endergonic process. Constant pressure, constant temperature reactions are exergonic if and only if the Gibbs ...
oxidation
Redox ( , , reduction–oxidation or oxidation–reduction) is a type of chemical reaction in which the oxidation states of the reactants change. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is ...
of the
aldehyde
In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
in
glyceraldehyde 3-phosphate
Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms.Nelson, D ...
. The result of this oxidation is the conversion of the aldehyde group into a
carboxylic acid
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an Substituent, R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl ...
group which drives the formation of an acyl phosphate bond. This is incidentally the only step in the glycolytic pathway in which
NAD+ is converted into
NADH
Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an ade ...
. The formation reaction of 1,3BPG requires the presence of an enzyme called
glyceraldehyde-3-phosphate dehydrogenase.
The
high-energy acyl phosphate bond of 1,3BPG is important in
respiration
Respiration may refer to:
Biology
* Cellular respiration, the process in which nutrients are converted into useful energy in a cell
** Anaerobic respiration, cellular respiration without oxygen
** Maintenance respiration, the amount of cellul ...
as it assists in the formation of
ATP. The molecule of ATP created during the following reaction is the first molecule produced during respiration. The reaction occurs as follows;
:1,3-bisphosphoglycerate + ADP ⇌ 3-phosphoglycerate + ATP
The transfer of an
inorganic phosphate from the carboxyl group on 1,3BPG to ADP to form ATP is reversible due to a low
ΔG. This is as a result of one acyl phosphate bond being cleaved whilst another is created. This reaction is not naturally spontaneous and requires the presence of a
catalyst
Catalysis () is the increase in rate of a chemical reaction due to an added substance known as a catalyst (). Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quick ...
. This role is performed by the
enzyme
An enzyme () is a protein that acts as a biological catalyst by accelerating chemical reactions. The molecules upon which enzymes may act are called substrate (chemistry), substrates, and the enzyme converts the substrates into different mol ...
phosphoglycerate kinase. During the reaction phosphoglycerate kinase undergoes a substrate induced conformational change similar to another metabolic enzyme called
hexokinase
A hexokinase is an enzyme that irreversibly phosphorylates hexoses (six-carbon sugars), forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important p ...
.
Because two molecules of glyceraldehyde-3-phosphate are formed during glycolysis from one molecule of glucose, 1,3BPG can be said to be responsible for two of the ten molecules of ATP produced during the entire process. Glycolysis also uses two molecules of ATP in its initial stages as a
committed and irreversible step. For this reason glycolysis is not reversible and has a net produce of 2 molecules of ATP and two of NADH. The two molecules of NADH themselves go on to produce approximately 3 molecules of ATP each.
In the Calvin cycle
1,3-BPG has a very similar role in the
Calvin cycle
The Calvin cycle, light-independent reactions, bio synthetic phase, dark reactions, or photosynthetic carbon reduction (PCR) cycle of photosynthesis is a series of chemical reactions that convert carbon dioxide and hydrogen-carrier compounds into ...
to its role in the glycolytic pathway. For this reason both reactions are said to be analogous. However the reaction pathway is effectively reversed. The only other major difference between the two reactions is that NADPH is used as an electron donor in the calvin cycle whilst NAD
+ is used as an electron acceptor in glycolysis. In this reaction cycle 1,3BPG originates from
3-phosphoglycerate and is made into
glyceraldehyde 3-phosphate
Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms.Nelson, D ...
by the action of specific enzymes.
Contrary to the similar reactions of the glycolytic pathway, 1,3BPG in the Calvin cycle does not produce ATP but instead uses it. For this reason it can be considered to be an irreversible and committed step in the cycle. The outcome of this section of the cycle is an inorganic phosphate is removed from 1,3BPG as a hydrogen ion and two electrons are added to the compound
+.
In complete reverse of the glycolytic pathway reaction, the enzyme phosphoglycerate kinase catalyses the reduction of the
carboxyl
In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group () attached to an R-group. The general formula of a carboxylic acid is often written as or , sometimes as with R referring to an organyl group (e.g. ...
group of 1,3BPG to form an
aldehyde
In organic chemistry, an aldehyde () (lat. ''al''cohol ''dehyd''rogenatum, dehydrogenated alcohol) is an organic compound containing a functional group with the structure . The functional group itself (without the "R" side chain) can be referred ...
instead. This reaction also releases an
inorganic phosphate molecule which is subsequently used as energy for the donation of electrons from the conversion of NADPH to NADP
+. Overseeing this latter stage of the reaction is the enzyme glyceraldehyde-phosphate dehydrogenase.
In oxygen transfer
During normal
metabolism
Metabolism (, from ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the co ...
in human erythrocytes, ≈19% of the 1,3BPG produced does not go any further in the glycolytic pathway.
It is instead shunted through the
Luebering–Rapoport pathway involving the reduction of ATP in the
red blood cells
Red blood cells (RBCs), referred to as erythrocytes (, with -''cyte'' translated as 'cell' in modern usage) in academia and medical publishing, also known as red cells, erythroid cells, and rarely haematids, are the most common type of blood cel ...
. During this alternate pathway it is made into a similar molecule called
2,3-bisphosphoglyceric acid
2,3-Bisphosphoglyceric acid (conjugate base 2,3-bisphosphoglycerate) (2,3-BPG), also known as 2,3-diphosphoglyceric acid (conjugate base 2,3-diphosphoglycerate) (2,3-DPG), is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglyc ...
(2,3BPG).
2,3BPG is used as a mechanism to oversee the efficient release of
oxygen
Oxygen is a chemical element; it has chemical symbol, symbol O and atomic number 8. It is a member of the chalcogen group (periodic table), group in the periodic table, a highly reactivity (chemistry), reactive nonmetal (chemistry), non ...
from
hemoglobin
Hemoglobin (haemoglobin, Hb or Hgb) is a protein containing iron that facilitates the transportation of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the sole exception of the fish family Channichthyidae. Hemoglobin ...
. Levels of this 1,3BPG will raise in a patient's blood when oxygen levels are low as this is one of the mechanisms of
acclimatization
Acclimatization or acclimatisation ( also called acclimation or acclimatation) is the process in which an individual organism adjusts to a change in its environment (such as a change in altitude, temperature, humidity, photoperiod, or pH), ...
. Low oxygen levels trigger a rise in 1,3BPG levels which in turn raises the level of 2,3BPG which alters the efficiency of oxygen dissociation from hemoglobin.
References
External links
1,3BPG in Glycolysis and FermentationMedical Dictionary reference for 1,3BPG
{{DEFAULTSORT:Bisphosphoglyceric Acid, 1, 3-
Photosynthesis
Biomolecules
Cellular respiration
Organophosphates
Glycolysis
Metabolic intermediates