Gian Francesco Malfatti
   HOME

TheInfoList



OR:

Giovanni Francesco Giuseppe Malfatti, also known as Gian Francesco or Gianfrancesco (26 September 1731 – 9 October 1807) was an Italian
mathematician A mathematician is someone who uses an extensive knowledge of mathematics in their work, typically to solve mathematical problems. Mathematicians are concerned with numbers, data, quantity, mathematical structure, structure, space, Mathematica ...
. He was born in Ala,
Trentino Trentino (), officially the Autonomous Province of Trento (; ; ), is an Autonomous province#Italy, autonomous province of Italy in the Northern Italy, country's far north. Trentino and South Tyrol constitute the Regions of Italy, region of Tren ...
,
Holy Roman Empire The Holy Roman Empire, also known as the Holy Roman Empire of the German Nation after 1512, was a polity in Central and Western Europe, usually headed by the Holy Roman Emperor. It developed in the Early Middle Ages, and lasted for a millennium ...
and died in
Ferrara Ferrara (; ; ) is a city and ''comune'' (municipality) in Emilia-Romagna, Northern Italy, capital of the province of Ferrara. it had 132,009 inhabitants. It is situated northeast of Bologna, on the Po di Volano, a branch channel of the main ...
. Malfatti studied at the College of San Francesco Saverio in
Bologna Bologna ( , , ; ; ) is the capital and largest city of the Emilia-Romagna region in northern Italy. It is the List of cities in Italy, seventh most populous city in Italy, with about 400,000 inhabitants and 150 different nationalities. Its M ...
where his mentors included Vincenzo Riccati,
Laura Bassi Laura Maria Caterina Bassi Veratti (29 October 1711 – 20 February 1778) was an Italian physicist and academic. Recognized and depicted as "Minerva" (goddess of wisdom), she was the first woman to have a doctorate in science, and List of women ...
, F. M. Zanotti and Gabriele Manfredi. He moved to Ferrara in 1754 and became a professor at the
University of Ferrara The University of Ferrara () is the main university of the city of Ferrara in the Emilia-Romagna region of northern Italy. In the years prior to the First World War the University of Ferrara, with more than 500 students, was the best attended of ...
when it was re-established in 1771. In 1782 he was one of the founders of the '' Società Italiana delle Scienze'', founded by Antonio Maria Lorgna, later to become the Accademia nazionale delle scienze detta dei XL.


Contributions to mathematics

In 1803, Malfatti posed the problem of carving three circular
column A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member ...
s out of a triangular block of marble, using as much of the marble as possible, and conjectured that three mutually tangent circles inscribed within the triangle would provide the optimal solution. These tangent circles are now known as Malfatti circles after his work, despite the earlier work of Japanese mathematician Ajima Naonobu and of Malfatti's countryman Gilio di Cecco da Montepulciano on the same problem and even though the conjecture was later proven false. Several
triangle center In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, ...
s derived from these circles are also named after both Ajima and Malfatti.C. Kimberling
Encyclopedia of Triangle Centers
, X(179), X(180), and X(400).
Additional topics in Malfatti's research concerned
quintic equation In mathematics, a quintic function is a function of the form :g(x)=ax^5+bx^4+cx^3+dx^2+ex+f,\, where , , , , and are members of a field, typically the rational numbers, the real numbers or the complex numbers, and is nonzero. In other word ...
s, and the property of the
lemniscate of Bernoulli In geometry, the lemniscate of Bernoulli is a plane curve defined from two given points and , known as foci, at distance from each other as the locus of points so that . The curve has a shape similar to the numeral 8 and to the ∞ symbol. I ...
that a ball rolling down an arc of the lemniscate, under the influence of gravity, will take the same time to traverse it as a ball rolling down a straight line segment connecting the endpoints of the arc.


Publications

*. * * ''Epistola altera ad... Vincentium Riccatum''. Ferrariae, apud Iosephum Barberium (1759). * ''De aequationibus quadrato-cubicis dissertation analitica''. Atti dell'Accademia delle Scienze di Siena, t. 4 (1771) pp. 129–185. * ''Lotto''. Prodromo della ''Nuova Enciclopedia Italiana'', Siena, per Vincenzo Pazzini Carli e figli, e Luigi e Benedetto Bindi (1779) pp. 66–95. * ''Della Curva Cassiniana e di una nuova proprietà meccanica della quale essa è dotata, trattato sintetico''. In Pavia, nella stamperia del Monastero di S. Salvatore (1781). * ''Esame critico di un problema di probabilità del Sig. Daniele Bernoulli, e soluzione d'un altro problema analogo al Bernulliano''. Memorie di Matematica e Fisica della Società Italiana, t. 1 (1782) pp. 768–824. * ''Delle formole differenziali la cui integrazione dipende dalla rettificazione delle sezioni coniche''. Memorie di Matematica e Fisica della Società Italiana, t. 2 (1784) pp. 749–786. * ''Giuoco del lotto''. Antologia Romana. In Roma, presso Gregorio Settari, t. 11 (1785) pp. 81–95. * ''Delle serie ricorrenti''. Memorie di Matematica e Fisica della Società Italiana, t. 3 (1786) pp. 571–663. * ''Soluzione generale di un problema geometrico di Pappo Alessandrino''. Memorie di Matematica e Fisica della Società Italiana, t. 4 (1788) pp. 201–205. * * ''Esame di una dimostrazione che dà l'Eulero di un Teorema analitico, e di una celebre regola per determinare la natura e i valori prossimi delle radici di qualunque equazione''. Memorie di Matematica e Fisica della Società Italiana, t. 4 (1788) pp. 206–248. * ''Determinazione del tempo che impiega un grave discendente per un canale circolare''. Memorie di Matematica e Fisica della Società Italiana, t. 7 (1794) pp. 462–477. * ''Pensieri sulla famosa questione de' logaritmi de' numeri negativi''. Memorie della Reale Accademia di Mantova, t. 1 (1795) pp. 3–54. * ''Tentativo sul problema delle pressioni che soffrono gli appoggi collocati agli angoli di una figura, derivate da un peso posto dentro la sua aia''. Memorie di Matematica e Fisica della Società Italiana, t. 8 p. ''2º'' (1799) pp. 319–415. * ''Memoria sopra un problema stereotomico''. Memorie di Matematica e Fisica della Società Italiana, t. 10 p. ''1º'' (1803) pp. 235–244. * ''Brevi riflessioni alla critica del tentativo pel problema delle pressioni, fatta dal Sig. Paoli nel t. IX di questa Società''. Memorie di Matematica e Fisica della Società Italiana, t. 10 p. ''1º'' (1803) pp. 245–284. * ''Lettera al Presidente della Società Italiana delle Scienze''. Memorie di Matematica e Fisica della Società Italiana, t. 11 (1804) pp. XXIX-XXXII. * ''Dubbi proposti al socio Paolo Ruffini sulla sua dimostrazione dell'impossibilità di risolvere le equazioni superiori al quarto grado''. Memorie di Matematica e Fisica della Società Italiana, t. 11 (1804) pp. 579–607. * ''Appendice al problema delle pressioni''. Memorie di Matematica e Fisica della Società Italiana, t. 12 p. ''1º'' (1805) pp. 100–105. * ''Saggio di alcuni problemi numerici''. Memorie di Matematica e Fisica della Società Italiana, t. 12 p. ''1º'' (1805) pp. 296–317. * ''Problema geometrico: fra i triangoli equilateri, i quadrati e il circolo, che si possa inscrivere in un dato triangolo, sceglier la figura dell'aia massima''. Memorie di Matematica e Fisica della Società Italiana, t. 13 p. ''1º'' (1807) pp. 247–284.


Notes


References

* * Leonardo Franchini, "La matematica e il gioco del lotto - Una biografia di Gianfrancesco Malfatti", Edizioni Stella, Rovereto, ottobre 2007. * Gianfrancesco Malfatti nella cultura del suo tempo. Atti del convegno 23-24 ottobre 1981, ed. by Luciano Biasini, Mario Fiorentini, Luigi Pepe, Luciano Capra, Università degli Studi di Ferrara: Ferrara. * Enrico Giusti (1982), "''Problemi e metodi di analisi matematica nell'opera di Gianfrancesco Malfatti''", in “Atti del Convegno su Gian Maria Malfatti”, Ferrara, 23-24 ottobre 1981, pp. 37–56. *


External links

* Clark Kimberling's page o
Malfatti
* Leonardo Franchini,
Il signore dei numeri
', 2 luglio 2007 - Breve biografia del matematico
Malfatti's Problem
in
Cut-the-knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet Union, Soviet-born Israeli Americans, Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow ...

Malfatti's Problem
in
Mathworld ''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science ...
{{DEFAULTSORT:Malfatti, Gian Francesco 1731 births 1807 deaths People from Ala, Trentino 18th-century Italian mathematicians 19th-century Italian mathematicians 18th-century mathematicians from the Holy Roman Empire Emigrants from the Holy Roman Empire People from the Papal States